Tight Complexity Bounds for Counting Generalized Dominating Sets in Bounded-Treewidth Graphs

Jacob Focke¹ Dániel Marx¹ Fionn Mc Inerney¹ Daniel Neuen² Govind S. Sankar³ **Philipp Schepper¹** Philip Wellnitz⁴

¹ CISPA Helmholtz Center for Information Security

² Simon Fraser University

³ Duke University

⁴ MPI Informatics, SIC

January 24, 2023

#Independent Set

Count size-k subsets $S \subseteq V(G)$ of pairwise nonadjacent vertices.

#Independent Set

Count size-k subsets $S \subseteq V(G)$ of pairwise nonadjacent vertices.

- $2^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm [N'06] given a tree decomposition of width tw(G)
- No $(2 \varepsilon)^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm (under SETH) [LMS'18]

#Independent Set

Count size-k subsets $S \subseteq V(G)$ of pairwise nonadjacent vertices.

- $2^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm [N'06] given a tree decomposition of width tw(G)
- No $(2 \varepsilon)^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm (under SETH) [LMS'18]

Strong Exponential Time Hypothesis (SETH):

For any $\delta > 0$, there is a large enough k such that there is no $(2 - \delta)^n$ algorithm for k-CNF-SAT.

#Independent Set

Count size-k subsets $S \subseteq V(G)$ of pairwise nonadjacent vertices.

- $2^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm [N'06] given a tree decomposition of width tw(G)
- No $(2 \varepsilon)^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm (under SETH) [LMS'18]

#Dominating Set

Count size-k subsets $S \subseteq V(G)$ whose neighborhoods cover $V(G) \setminus S$.

Strong Exponential Time Hypothesis (SETH):

For any $\delta > 0$, there is a large enough k such that there is no $(2 - \delta)^n$ algorithm for k-CNF-SAT.

#Independent Set

Count size-k subsets $S \subseteq V(G)$ of pairwise nonadjacent vertices.

- $2^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm [N'06] given a tree decomposition of width tw(G)
- No $(2 \varepsilon)^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm (under SETH) [LMS'18]

#Dominating Set

Count size-k subsets $S \subseteq V(G)$ whose neighborhoods cover $V(G) \setminus S$.

- $3^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm [vRBR'09] given a tree decomposition of width tw(G)
- No $(3 \varepsilon)^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm (under SETH) [LMS'18]

Strong Exponential Time Hypothesis (SETH):

For any $\delta > 0$, there is a large enough k such that there is no $(2 - \delta)^n$ algorithm for k-CNF-SAT.

#Independent Set

Count size-k subsets $S \subseteq V(G)$ of pairwise nonadjacent vertices.

#Dominating Set

Count size-k subsets $S \subseteq V(G)$ whose neighborhoods cover $V(G) \setminus S$.

#Independent Set

Count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \{0\}$ and for all $s \notin S$: $|N(s) \cap S| \in \mathbb{N}$.

#Dominating Set

Count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \mathbb{N}$ and for all $s \notin S$: $|N(s) \cap S| \in \mathbb{N} \setminus \{0\}$.

#Independent Set

Count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \{0\}$ and for all $s \notin S$: $|N(s) \cap S| \in \mathbb{N}$.

#Dominating Set

Count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \mathbb{N}$ and for all $s \notin S$: $|N(s) \cap S| \in \mathbb{N} \setminus \{0\}$.

$$\#(\sigma, \rho)$$
-Dominating Set for fixed $\sigma, \rho \subseteq \mathbb{N}$ [Telle'94]

Given a graph G, count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \sigma$, for all $s \notin S$: $|N(s) \cap S| \in \rho$.

We consider finite or cofinite σ and ρ .

$\#(\{0\}, \mathbb{N})$ -Dominating Set

Count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \{0\}$ and for all $s \notin S$: $|N(s) \cap S| \in \mathbb{N}$.

$\#(\mathbb{N}, \mathbb{N} \setminus \{0\})$ -Dominating Set

Count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \mathbb{N}$ and for all $s \notin S$: $|N(s) \cap S| \in \mathbb{N} \setminus \{0\}$.

$$\#(\sigma, \rho)$$
-Dominating Set for fixed $\sigma, \rho \subseteq \mathbb{N}$ [Telle'94]

Given a graph G, count $S \subseteq V(G)$ with |S| = k s.t. for all $s \in S$: $|N(s) \cap S| \in \sigma$, for all $s \notin S$: $|N(s) \cap S| \in \rho$.

We consider finite or cofinite σ and ρ .

$\#(\sigma, \rho)$ -Dominating Set Is Relevant

 $\mathbb{N} \setminus \{0\}$

 $\{0, 1\}$

 $\mathbb{N} \setminus \{0\}$

 $\mathbb{N} \setminus \{0\}$

{1}

4/13

{0}

{0}

{0}

 $\mathbb{N} \setminus \{0\}$

 $\#(\sigma, \rho)$ -Dominating Set for fixed $\sigma, \rho \subseteq \mathbb{N}$ [Telle'94]

Given a graph G, count $S \subseteq V(G)$ with |S| = k s.t.

for all $s \in S$: $|N(s) \cap S| \in \sigma$ and for all $s \notin S$: $|N(s) \cap S| \in \rho$.

This generalizes many well-known problems including

Classical name

Independent Set

Dominating Set

Strong Independent Set

Independent Dominating Set Perfect Code/Exact Independent Dominating Set

Perfect Dominating Set

Induced d-Regular Subgraph

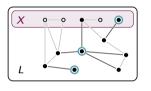
Induced Bounded-Degree Subgraph

Total Dominating Set

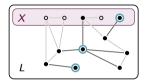
Consider finite $\sigma = \{0, 2\}$ and cofinite $\rho = \{1, 4, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, 3\}$

A separator X, a side $L\supseteq X$ of the separated graph, a partial solution S for L

Consider finite $\sigma = \{0, 2\}$ and cofinite $\rho = \{1, 4, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, 3\}$ A separator X, a side $L \supseteq X$ of the separated graph, a partial solution S for L



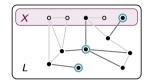
Consider finite $\sigma = \{0, 2\}$ and cofinite $\rho = \{1, 4, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, 3\}$ A separator X, a side $L \supset X$ of the separated graph, a partial solution S for L



Consider a *selected* vertex v in $X \cap S$:

 \blacksquare > 2 neighbors in *S*? *S* is invalid!

Consider finite $\sigma = \{0, \mathbf{2}\}$ and cofinite $\rho = \{1, 4, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, 3\}$ A separator X, a side $L \supseteq X$ of the separated graph, a partial solution S for L

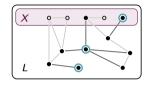


Consider a *selected* vertex v in $X \cap S$:

- \blacksquare > 2 neighbors in *S*? *S* is invalid!
- 0, 1, or 2 neighbors possible
- \rightsquigarrow 3 = max σ + 1 states

Consider finite $\sigma=\{0, \textbf{2}\}$ and cofinite $\rho=\{1, 4, 5, 6, 7, \dots\}=\mathbb{N}\setminus\{0, 2, 3\}$

A separator X, a side $L\supseteq X$ of the separated graph, a partial solution S for L



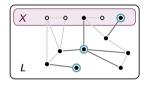
Consider an *unselected* vertex in $X \setminus S$:

■ No bound for number of neighbors

Consider a *selected* vertex v in $X \cap S$:

- \blacksquare > 2 neighbors in *S*? *S* is invalid!
- 0, 1, or 2 neighbors possible
- \rightsquigarrow 3 = max σ + 1 states

Consider finite $\sigma = \{0, \mathbf{2}\}$ and cofinite $\rho = \{1, 4, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, \mathbf{3}\}$ A separator X. a side $L \supseteq X$ of the separated graph. a partial solution S for L



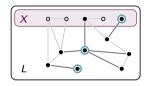
Consider a *selected* vertex v in $X \cap S$:

- \blacksquare > 2 neighbors in *S*? *S* is invalid!
- 0, 1, or 2 neighbors possible
- \rightsquigarrow 3 = max σ + 1 states

Consider an *unselected* vertex in $X \setminus S$:

- No bound for number of neighbors
- Last "bad" state is "3 neighbors"; Cannot distinguish 4,5,... neighbors (v does not care if it gets further neighbors)

Consider finite $\sigma = \{0, \mathbf{2}\}$ and cofinite $\rho = \{1, \mathbf{4}, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, \mathbf{3}\}$ A separator X. a side $L \supseteq X$ of the separated graph. a partial solution S for L



Consider a *selected* vertex v in $X \cap S$:

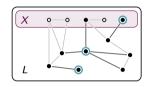
- \blacksquare > 2 neighbors in *S*? *S* is invalid!
- 0, 1, or 2 neighbors possible
- \rightsquigarrow 3 = max σ + 1 states

Consider an *unselected* vertex in $X \setminus S$:

- No bound for number of neighbors
- Last "bad" state is "3 neighbors"; Cannot distinguish 4,5,... neighbors (v does not care if it gets further neighbors)
- \blacksquare 0, 1, 2, 3, or " \geq 4" neighbors possible

$$\leadsto 5 = \max(\mathbb{Z} \setminus \rho) + 2$$
 states

Consider finite $\sigma = \{0, \mathbf{2}\}$ and cofinite $\rho = \{1, \mathbf{4}, 5, 6, 7, \dots\} = \mathbb{N} \setminus \{0, 2, \mathbf{3}\}$ A separator X. a side $L \supseteq X$ of the separated graph. a partial solution S for L



Consider a *selected* vertex v in $X \cap S$:

- \blacksquare > 2 neighbors in *S*? *S* is invalid!
- 0, 1, or 2 neighbors possible

$$\rightsquigarrow$$
 3 = max σ + 1 states

Consider an *unselected* vertex in $X \setminus S$:

- No bound for number of neighbors
- Last "bad" state is "3 neighbors"; Cannot distinguish 4,5,... neighbors (v does not care if it gets further neighbors)
- \blacksquare 0, 1, 2, 3, or " \geq 4" neighbors possible

$$\leadsto$$
 5 = max($\mathbb{Z} \setminus \rho$) + 2 states

Consider $(3+5)^{|X|}=((\max\sigma+1)+(\max(\mathbb{Z}\setminus\rho)+2))^{|X|}$ states for the vertices in X.

$$\sigma_{\mathsf{top}} \coloneqq egin{cases} \mathsf{max}\,\sigma & \mathsf{for \ finite}\ \sigma; \ 1 + \mathsf{max}(\mathbb{Z} \setminus \sigma) & \mathsf{for \ cofinite}\ \sigma. \end{cases}$$

$$ho_{\mathsf{top}} \coloneqq egin{cases} \mathsf{max}\,
ho & \mathsf{for \ finite} \
ho; \ 1 + \mathsf{max}(\mathbb{Z} \setminus
ho) & \mathsf{for \ cofinite} \
ho. \end{cases}$$

$$\sigma_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\sigma & \mathsf{for\ finite}\ \sigma; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \sigma) & \mathsf{for\ cofinite}\ \sigma. \end{cases} \qquad \rho_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\rho & \mathsf{for\ finite}\ \rho; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \rho) & \mathsf{for\ cofinite}\ \rho. \end{cases}$$

Previous observations and fast convolution techniques give:

Theorem (van Rooij'20)

 $\#(\sigma, \rho)$ -DOMINATING SET can be solved in time $(\sigma_{top} + \rho_{top} + 2)^{tw(G)} \cdot poly(|G|)$ if σ, ρ are finite or cofinite and a tree decomposition of width tw(G) is given.

$$\sigma_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\sigma & \mathsf{for\ finite}\ \sigma; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \sigma) & \mathsf{for\ cofinite}\ \sigma. \end{cases} \qquad \rho_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\rho & \mathsf{for\ finite}\ \rho; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \rho) & \mathsf{for\ cofinite}\ \rho. \end{cases}$$

Previous observations and fast convolution techniques give:

Theorem (van Rooij'20)

 $\#(\sigma, \rho)$ -DOMINATING SET can be solved in time $(\sigma_{top} + \rho_{top} + 2)^{tw(G)} \cdot poly(|G|)$ if σ, ρ are finite or cofinite and a tree decomposition of width tw(G) is given.

	σ	ho	Runtime (ignoring polynomial terms)
#Independent Set	{0}	N	$(0+0+2)^{tw}=2^{tw}$
#Dominating Set	\mathbb{N}	$\mathbb{N}\setminus\{0\}$	$(0+1+2)^{tw} = 3^{tw}$
$\# Ind\ d$ -reg Subgraph	$\{d\}$	N	$(d+0+2)^{\text{tw}} = (d+2)^{\text{tw}}$
#Perfect Code	{0}	$\{1\}$	$(0+1+2)^{tw}=3^{tw}$

$$\sigma_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\sigma & \mathsf{for \ finite}\ \sigma; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \sigma) & \mathsf{for \ cofinite}\ \sigma. \end{cases} \qquad \rho_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\rho & \mathsf{for \ finite}\ \rho; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \rho) & \mathsf{for \ cofinite}\ \rho. \end{cases}$$

Previous observations and fast convolution techniques give:

Theorem (van Rooij'20)

 $\#(\sigma, \rho)$ -DOMINATING SET can be solved in time $(\sigma_{top} + \rho_{top} + 2)^{tw(G)} \cdot poly(|G|)$ if σ, ρ are finite or cofinite and a tree decomposition of width tw(G) is given.

	σ	ho	Runtime (ignoring polynomial	terms)
#Independent Set	{0}	N	$(0+0+2)^{tw}=2^{tw}$	tight
#Dominating Set	\mathbb{N}		$(0+1+2)^{tw}=3^{tw}$	tight
$\# Ind\ d$ -reg Subgraph	$\{d\}$	\mathbb{N}	$(d+0+2)^{tw} = (d+2)^{tw}$	
#Perfect Code	{0}	$\{1\}$	$(0+1+2)^{tw}=3^{tw}$	

$$\sigma_{\mathsf{top}} \coloneqq \begin{cases} \max \sigma & \text{for finite } \sigma; \\ 1 + \max(\mathbb{Z} \setminus \sigma) & \text{for cofinite } \sigma. \end{cases} \qquad \rho_{\mathsf{top}} \coloneqq \begin{cases} \max \rho & \text{for finite } \rho; \\ 1 + \max(\mathbb{Z} \setminus \rho) & \text{for cofinite } \rho. \end{cases}$$

Previous observations and fast convolution techniques give:

Theorem (van Rooij'20)

 $\#(\sigma, \rho)$ -DOMINATING SET can be solved in time $(\sigma_{top} + \rho_{top} + 2)^{tw(G)} \cdot poly(|G|)$ if σ, ρ are finite or cofinite and a tree decomposition of width tw(G) is given.

	σ	ho	Runtime (ignoring polynomial	terms)
#Independent Set	{0}	N	$(0+0+2)^{tw}=2^{tw}$	tight
#Dominating Set	N	$\mathbb{N}\setminus\{0\}$	$(0+1+2)^{tw}=3^{tw}$	tight
#Ind <i>d-</i> reg Subgraph	$\{d\}$	N	$(d+0+2)^{tw} = (d+2)^{tw}$?
#Perfect Code	{0}	$\{1\}$	$(0+1+2)^{tw}=3^{tw}$?

Question: Is this algorithm optimal?

$$\sigma_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\sigma & \mathsf{for\ finite}\ \sigma; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \sigma) & \mathsf{for\ cofinite}\ \sigma. \end{cases} \qquad \rho_{\mathsf{top}} \coloneqq \begin{cases} \mathsf{max}\,\rho & \mathsf{for\ finite}\ \rho; \\ 1 + \mathsf{max}(\mathbb{Z} \setminus \rho) & \mathsf{for\ cofinite}\ \rho. \end{cases}$$

Previous observations and fast convolution techniques give:

Theorem (van Rooij'20)

 $\#(\sigma, \rho)$ -DOMINATING SET can be solved in time $(\sigma_{top} + \rho_{top} + 2)^{tw(G)} \cdot poly(|G|)$ if σ, ρ are finite or cofinite and a tree decomposition of width tw(G) is given.

	σ	ho	Runtime (ignoring polynomial	terms)
#Independent Set	{0}	N	$(0+0+2)^{tw}=2^{tw}$	tight
#Dominating Set	\mathbb{N}	$\mathbb{N}\setminus\{0\}$	$(0+1+2)^{tw}=3^{tw}$	tight
$\# Ind \ d$ -reg Subgraph	$\{d\}$	\mathbb{N}	$(d+0+2)^{tw} = (d+2)^{tw}$?
#Perfect Code	{0}	$\{1\}$	$(0+1+2)^{tw}=3^{tw}$?

Question: Is this algorithm optimal?

No! We improve it for many (σ, ρ) and show that our improvement is optimal.

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

σ	ho	m-structured for
{1,3}	{4}	m = 2
$\{0, 4\}$	$\{1, 9\}$	
{0}	$\{1\}$	
$\{0, 3\}$	$\{1, 5\}$	
{ <i>d</i> }	N	

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

σ	ho	m-structured for
{1, 3}	{4}	m = 2
$\{0, 4\}$	$\{1, 9\}$	m = 2, 4
{0}	$\{1\}$	
$\{0, 3\}$	$\{1,5\}$	
$\{d\}$	\mathbb{N}	

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

σ	ho	m-structured for
{1,3}	{4}	m = 2
$\{0, 4\}$	$\{1, 9\}$	m = 2, 4
{0}	$\{1\}$	every m ≥ 2
$\{0, 3\}$	$\{1,5\}$	
$\{d\}$	\mathbb{N}	

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

σ	ho	m-structured for
{1,3}	{4}	m=2
$\{0, 4\}$	$\{1, 9\}$	m = 2, 4
{0}	$\{1\}$	every m ≥ 2
$\{0, 3\}$	$\{1,5\}$	$no\;m\geq 2$
$\{d\}$	\mathbb{N}	$no\;m\geq 2$

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Examples:

σ	ho	m-structured for
{1,3}	{4}	m = 2
$\{0, 4\}$	$\{1, 9\}$	m = 2, 4
{0}	$\{1\}$	every m ≥ 2
$\{0, 3\}$	$\{1,5\}$	no m ≥ 2
$\{d\}$	\mathbb{N}	no m ≥ 2

If (σ, ρ) is m-structured for some $m \ge 2$, we can get an improved algorithm.

Our Contribution

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} := \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$-c_{\sigma,\rho} \coloneqq \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 2$$

$$- \ c_{\sigma,
ho} \coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\} + 1$$

$$\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$$

Our Contribution

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} \coloneqq \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$- c_{\sigma,
ho} \coloneqq \max\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\} + 2$$

$$-c_{\sigma,
ho} \coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\} + 1$$

$$\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured.} \\$$

(but not
$$m \ge 3$$
-structured), and otherwise

Theorem (Upper Bounds)

```
\#(\sigma, \rho)-DOMINATING SET can be solved in time (c_{\sigma,\rho})^{\operatorname{tw}(G)} \cdot \operatorname{poly}(|G|) if \sigma, \rho are finite or cofinite and a tree decomposition of width \operatorname{tw}(G) is given.
```

Our Contribution

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} := \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$-c_{\sigma,\rho} := \max\{\sigma_{top}, \rho_{top}\} + 2$$

$$-c_{\sigma,\rho} \coloneqq \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 1$$

$$\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\$$

(but not
$$m \ge 3$$
-structured), and otherwise.

Theorem (Upper Bounds)

```
\#(\sigma, \rho)-DOMINATING SET can be solved in time (c_{\sigma,\rho})^{\operatorname{tw}(G)} \cdot \operatorname{poly}(|G|) if \sigma, \rho are finite or cofinite and a tree decomposition of width \operatorname{tw}(G) is given.
```

Theorem (Lower Bounds)

Unless #SETH fails, # (σ, ρ) -DOMINATING SET has no $(c_{\sigma, \rho} - \varepsilon)^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algo for non-trivial, finite or cofinite σ, ρ , even if a tree decomposition of width tw(G) is given.

Implications of the New Results

otherwise.

Definition

For finite or cofinite
$$\sigma$$
, $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} := \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$-c_{\sigma,
ho}:=\max\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\}+2$$

$$-c_{\sigma,
ho}\coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\}+1$$

 $\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ (\text{but not m} > 3\text{-structured}), \text{ and}$

	σ	ho	m-structured for	Runtime (ignor	ring polynomial terms)
#Independent Set	{0}	N	no m ≥ 2	2 ^{tw}	tight
$\#Dominating\;Set$	\mathbb{N}	$\mathbb{N}\setminus\{0\}$	no m ≥ 2	3^{tw}	tight
# Ind d-reg Subgraph	{ <i>d</i> }	\mathbb{N}	no m ≥ 2	$(d+2)^{tw}$?
#Perfect Code	{0}	$\{1\}$	every m ≥ 2	3 ^{tw}	?

Implications of the New Results

otherwise.

Definition

For finite or cofinite
$$\sigma$$
, $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} \coloneqq \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$-c_{\sigma,
ho}:=\max\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\}+2$$

$$-c_{\sigma,\rho} := \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 1$$

if (σ, ρ) is not m-structured, if $\sigma_{\mathsf{top}} = \rho_{\mathsf{top}}$ is even and (σ, ρ) is 2-structured (but not m > 3-structured), and

m-structured for Runtime (ignoring polynomial terms) σ {0} N 2^{tw} #Independent Set tight no m > 2N $\mathbb{N} \setminus \{0\}$ 3^{tw} **#Dominating Set** no m > 2tight #Ind d-reg Subgraph {*d*} N no m > 2 $(d+2)^{tw}$ tight 3tw {1} #Perfect Code {0} every m > 2

Implications of the New Results

otherwise.

Definition

For finite or cofinite
$$\sigma$$
, $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} := \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$-c_{\sigma,
ho}:=\max\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\}+2$$

$$-c_{\sigma,
ho}\coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\}+1$$

if (σ, ρ) is not m-structured, if $\sigma_{\mathsf{top}} = \rho_{\mathsf{top}}$ is even and (σ, ρ) is 2-structured (but not m > 3-structured), and

	σ	ho	m-structured for	Runtime (ignoring polynomial terms)	
#Independent Set	{0}	N	no m ≥ 2	2 ^{tw}	tight
$\#Dominating\;Set$	\mathbb{N}	$\mathbb{N}\setminus\{0\}$	no m ≥ 2	3^{tw}	tight
$\# Ind \ d$ -reg Subgraph	$\{d\}$	\mathbb{N}	no m ≥ 2	$(d+2)^{tw}$	tight
#Perfect Code	{0}	$\{1\}$	every m ≥ 2	3tw 2tw	tight

m-structured (σ, ρ)

For $m \ge 2$, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Note: Cofinite sets are not m-structured. → Only finite sets are relevant.

m-structured (σ, ρ)

For $m \ge 2$, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Note: Cofinite sets are not m-structured. \leadsto Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Note: Cofinite sets are not m-structured. → Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:

Only a reduced number of states has to be considered

m-structured (σ, ρ)

For m \geq 2, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Note: Cofinite sets are not m-structured. → Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:

- Only a reduced number of states has to be considered
- Existing convolution techniques can be extended to handle join nodes efficiently

Recall: Each vertex can have $\max \sigma + \max \rho + 2$ states. (σ , ρ are finite!)

 \rightarrow For a set of k vertices, $(\max \sigma + \max \rho + 2)^k$ combinations must be to considered

Recall: Each vertex can have $\max \sigma + \max \rho + 2$ states. $(\sigma, \rho \text{ are finite!})$ \rightsquigarrow For a set of k vertices, $(\max \sigma + \max \rho + 2)^k$ combinations must be to considered

Assume (σ, ρ) is m-structured (e.g., m = 2):

■ The selection status of specific vertices determines the number of neighbors for other vertices (think of it as some parity-like argument).

Recall: Each vertex can have $\max \sigma + \max \rho + 2$ states. (σ , ρ are finite!)

 \rightarrow For a set of k vertices, $(\max \sigma + \max \rho + 2)^k$ combinations must be to considered

Assume (σ, ρ) is m-structured (e.g., m = 2):

- The selection status of specific vertices determines the number of neighbors for other vertices (think of it as some parity-like argument).
- Selection state and number of neighbors are "orthogonal" properties

Recall: Each vertex can have $\max \sigma + \max \rho + 2$ states. (σ , ρ are finite!)

 \rightarrow For a set of k vertices, $(\max \sigma + \max \rho + 2)^k$ combinations must be to considered

Assume (σ, ρ) is m-structured (e.g., m = 2):

- The selection status of specific vertices determines the number of neighbors for other vertices (think of it as some parity-like argument).
- Selection state and number of neighbors are "orthogonal" properties
- → Many combinations are ruled out

Recall: Each vertex can have $\max \sigma + \max \rho + 2$ states. (σ , ρ are finite!)

 \rightarrow For a set of k vertices, $(\max \sigma + \max \rho + 2)^k$ combinations must be to considered

Assume (σ, ρ) is m-structured (e.g., m = 2):

- The selection status of specific vertices determines the number of neighbors for other vertices (think of it as some parity-like argument).
- Selection state and number of neighbors are "orthogonal" properties
- → Many combinations are ruled out

Key Lemma (Upper Bounds)

For m-structured (σ, ρ) , the number of partial solutions for a separator of size k is

- $\blacksquare \approx (\max(\sigma \cup \rho) + 2)^k$ for m = 2 and $\max \sigma = \max \rho$ even,
- $\blacksquare \approx (\max(\sigma \cup \rho) + 1)^k$ otherwise.

- Algorithm from counting version transfers naturally, but more cases can be solved trivially (e.g., if $0 \in \rho$)
- \blacksquare Lower bounds can be adjusted for finite σ and ρ

- Algorithm from counting version transfers naturally, but more cases can be solved trivially (e.g., if $0 \in \rho$)
- Lower bounds can be adjusted for finite σ and ρ For cofinite σ or ρ :
- Use technique of representative sets to store fewer states

- Algorithm from counting version transfers naturally, but more cases can be solved trivially (e.g., if $0 \in \rho$)
- Lower bounds can be adjusted for finite σ and ρ For cofinite σ or ρ :
- Use technique of representative sets to store fewer states
- lacktriangle Number of partial solutions stored pprox number of missing degrees \leadsto better algorithm

- Algorithm from counting version transfers naturally, but more cases can be solved trivially (e.g., if $0 \in \rho$)
- Lower bounds can be adjusted for finite σ and ρ For cofinite σ or ρ :
- Use technique of representative sets to store fewer states
- Number of partial solutions stored \approx number of *missing* degrees \rightsquigarrow better algorithm Definition: $cost(\tau) := max(\tau)$ if τ is finite and $cost(\tau) := |\mathbb{N} \setminus \tau|$ if τ is cofinite.

- Algorithm from counting version transfers naturally, but more cases can be solved trivially (e.g., if $0 \in \rho$)
- Lower bounds can be adjusted for finite σ and ρ For cofinite σ or ρ :
- Use technique of representative sets to store fewer states
- Number of partial solutions stored \approx number of *missing* degrees \rightsquigarrow better algorithm Definition: $cost(\tau) := max(\tau)$ if τ is finite and $cost(\tau) := |\mathbb{N} \setminus \tau|$ if τ is cofinite.

Theorem

 (σ, ρ) -Dominating Set can be solved in time $(\max\{\cos(\sigma), \cos(\rho)\} + 1)^{(\omega+2)\text{tw}} \cdot n^{\mathcal{O}(1)}$ for (co)finite σ, ρ , given a tree decomposition of width tw with ω as matrix multiplication exponent.

- Algorithm from counting version transfers naturally, but more cases can be solved trivially (e.g., if $0 \in \rho$)
- \blacksquare Lower bounds can be adjusted for finite σ and ρ

For cofinite σ or ρ :

- Use technique of representative sets to store fewer states
- Number of partial solutions stored \approx number of *missing* degrees \rightsquigarrow better algorithm Definition: $cost(\tau) := max(\tau)$ if τ is finite and $cost(\tau) := |\mathbb{N} \setminus \tau|$ if τ is cofinite.

Theorem

 (σ, ρ) -Dominating Set can be solved in time $(\max\{\cos t(\sigma), \cos t(\rho)\} + 1)^{(\omega+2)tw} \cdot n^{\mathcal{O}(1)}$ for (co)finite σ, ρ , given a tree decomposition of width tw with ω as matrix multiplication exponent.

Example for $\sigma = \{0\}$, $\rho = \mathbb{N} \setminus \{1000\}$: The previous 1002^{tw} algorithm is improved to get a $2^{(\omega+2)\text{tw}} < 21^{\text{tw}}$ algorithm

Definition

For finite or cofinite $\sigma, \rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} \coloneqq \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$-c_{\sigma,\rho} := \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 2$$

$$- \ c_{\sigma,
ho} \coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\} + 1$$

$$\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$$

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

- $-c_{\sigma,\rho} := \sigma_{top} + \rho_{top} + 2$
- $-c_{\sigma,
 ho}:=\max\{\sigma_{\mathsf{top}},
 ho_{\mathsf{top}}\}+2$
- $-c_{\sigma,\rho} \coloneqq \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 1$

$$\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$$

■ Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for counting version, unless #SETH fails.

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

- $-c_{\sigma,\rho} := \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$
- $-c_{\sigma,
 ho}:=\max\{\sigma_{\mathsf{top}},
 ho_{\mathsf{top}}\}+2$

$$-c_{\sigma,\rho} \coloneqq \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 1$$

 $\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$

- Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for counting version, unless #SETH fails.
- Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for decision version with *finite* σ and ρ , unless SETH fails.

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

- $-c_{\sigma,\rho} \coloneqq \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$
- $\ c_{\sigma,
 ho} := \max\{\sigma_{\mathsf{top}},
 ho_{\mathsf{top}}\} + 2$
- $-c_{\sigma,
 ho} \coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
 ho_{\mathsf{top}}\} + 1$

 $\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$

- Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for counting version, unless #SETH fails.
- Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for decision version with *finite* σ and ρ , unless SETH fails.
- Faster algorithm for decision version if (at least) one of σ and ρ is *cofinite*.

Definition

For finite or cofinite $\sigma, \rho \subseteq \mathbb{N}$, we set

- $-c_{\sigma,\rho} := \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$
- $-c_{\sigma,
 ho}:=\max\{\sigma_{\mathsf{top}},
 ho_{\mathsf{top}}\}+2$
- $-c_{\sigma,\rho} \coloneqq \max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 1$

 $\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$

- Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for counting version, unless #SETH fails.
- Optimal $(c_{\sigma,\rho})^{\text{tw}} \cdot \text{poly}(|G|)$ algo for decision version with *finite* σ and ρ , unless SETH fails.
- Faster algorithm for decision version if (at least) one of σ and ρ is *cofinite*.

Full paper: arxiv.org/abs/2211.04278

Summary (formalized)

Definition

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we set

$$-c_{\sigma,\rho} \coloneqq \sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2$$

$$- \ c_{\sigma,
ho} \coloneqq \max\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\} + 2$$

$$- c_{\sigma,
ho} \coloneqq \mathsf{max}\{\sigma_{\mathsf{top}},
ho_{\mathsf{top}}\} + 1$$

$$\text{if } (\sigma,\rho) \text{ is not m-structured,} \\ \text{if } \sigma_{\mathsf{top}} = \rho_{\mathsf{top}} \text{ is even and } (\sigma,\rho) \text{ is 2-structured} \\ \text{(but not m} \geq 3\text{-structured), and} \\ \text{otherwise.} \\$$

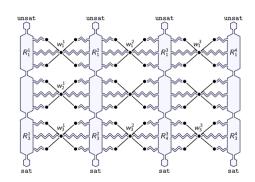
Theorem (Upper Bounds)

 $\#(\sigma, \rho)$ -Dominating Set can be solved in time $(c_{\sigma,\rho})^{\operatorname{tw}(G)} \cdot \operatorname{poly}(|G|)$ if σ, ρ are finite or cofinite and a tree decomposition of width $\operatorname{tw}(G)$ is given.

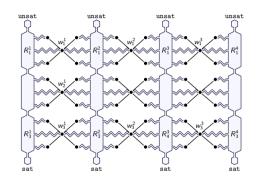
Theorem (Lower Bounds)

Unless #SETH fails, # (σ, ρ) -DOMINATING SET has no $(c_{\sigma,\rho} - \varepsilon)^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algo for non-trivial, finite or cofinite σ, ρ , even if a tree decomposition of width tw(G) is given.

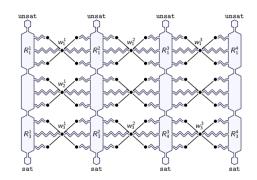
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
 - Constraints restrict the selection of vertices to predefined combinations



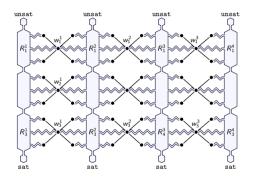
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating SET with constraints
 - Constraints restrict the selection of vertices to predefined combinations
 - This provides the power to check if "clauses are satisfied"



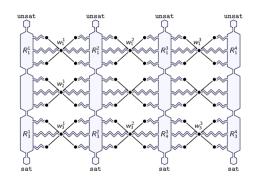
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -DOMINATING SET with constraints
 - Constraints restrict the selection of vertices to predefined combinations
 - This provides the power to check if "clauses are satisfied"
- 2 Implement the constraints



- 1 Reduce #SAT to $\#(\sigma, \rho)$ -DOMINATING SET with constraints
 - Constraints restrict the selection of vertices to predefined combinations
 - This provides the power to check if "clauses are satisfied"
- 2 Implement the constraints
 - Solutions that are easy to *find*, have to be counted, too.



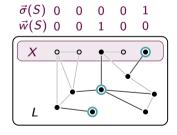
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating SET with constraints
 - Constraints restrict the selection of vertices to predefined combinations
 - This provides the power to check if "clauses are satisfied"
- 2 Implement the constraints
 - Solutions that are easy to *find*, have to be counted, too.
 - Use counting complexity techniques and carefully designed gadgets to overcome these issues



Consider Perfect Code ($\sigma=\{0\}$, $ho=\{1\}$, m-structured for all m ≥ 2)

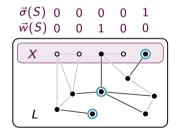
Consider Perfect Code ($\sigma = \{0\}$, $\rho = \{1\}$, m-structured for all m ≥ 2)

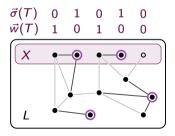
■ For a separator X and a partial solution S, we define σ vector $\overrightarrow{\sigma}(S) \in \{0,1\}^{|X|}$ and weight vector $\overrightarrow{w}(S) \in \{0,1\}^{|X|}$



Consider Perfect Code ($\sigma = \{0\}$, $\rho = \{1\}$, m-structured for all m ≥ 2)

■ For a separator X and a partial solution S, we define σ vector $\overrightarrow{\sigma}(S) \in \{0,1\}^{|X|}$ and weight vector $\overrightarrow{w}(S) \in \{0,1\}^{|X|}$ Consider two partial solutions S,T for X:



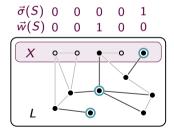


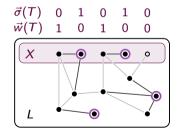
Consider Perfect Code ($\sigma = \{0\}$, $\rho = \{1\}$, m-structured for all m ≥ 2)

■ For a separator X and a partial solution S, we define σ vector $\overrightarrow{\sigma}(S) \in \{0,1\}^{|X|}$ and weight vector $\overrightarrow{w}(S) \in \{0,1\}^{|X|}$

Consider two partial solutions S, T for X:

■ Observe: $\overrightarrow{\sigma}(S) \cdot \overrightarrow{w}(T) \equiv_m \overrightarrow{\sigma}(T) \cdot \overrightarrow{w}(S)$





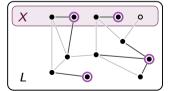
Consider Perfect Code ($\sigma = \{0\}, \rho = \{1\}, \text{ m-structured for all } m \geq 2$)

■ For a separator X and a partial solution S, we define σ vector $\overrightarrow{\sigma}(S) \in \{0,1\}^{|X|}$ and weight vector $\overrightarrow{w}(S) \in \{0,1\}^{|X|}$

Consider two partial solutions S, T for X:

- Observe: $\overrightarrow{\sigma}(S) \cdot \overrightarrow{w}(T) \equiv_m \overrightarrow{\sigma}(T) \cdot \overrightarrow{w}(S) \rightsquigarrow \sigma$ -vectors are "orthogonal" to weight-vectors
- Not too many solutions satisfy this "orthogonality" at the same time

$$\vec{\sigma}(T)$$
 0 1 0 1 0 $\vec{w}(T)$ 1 0 1 0



Consider Perfect Code ($\sigma=\{0\},\ \rho=\{1\},\ {\sf m ext{-structured}}$ for all ${\sf m}\geq 2$)

■ For a separator X and a partial solution S, we define σ vector $\overrightarrow{\sigma}(S) \in \{0,1\}^{|X|}$ and weight vector $\overrightarrow{w}(S) \in \{0,1\}^{|X|}$

Consider two partial solutions S, T for X:

- Observe: $\overrightarrow{\sigma}(S) \cdot \overrightarrow{w}(T) \equiv_m \overrightarrow{\sigma}(T) \cdot \overrightarrow{w}(S) \rightsquigarrow \sigma$ -vectors are "orthogonal" to weight-vectors
- Not too many solutions satisfy this "orthogonality" at the same time

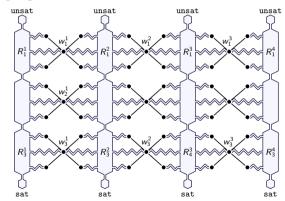
Key Lemma (Upper Bounds)

For m-structured (σ, ρ) , the number of partial solutions is

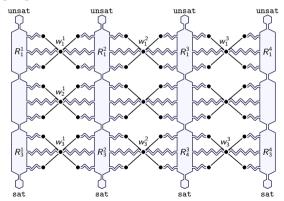
- lacksquare $\mathcal{O}((\max\{\sigma_{\mathsf{top}},
 ho_{\mathsf{top}}\} + 2)^{\mathsf{tw}})$ for $\mathsf{m} = 2$ and $\sigma_{\mathsf{top}} =
 ho_{\mathsf{top}}$ even,
- $\mathcal{O}((\max\{\sigma_{\mathsf{top}}, \rho_{\mathsf{top}}\} + 1)^{\mathsf{tw}})$ otherwise.

- Use general framework from [CM16]:
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
- 2 Implement constraints using carefully crafted gadgets

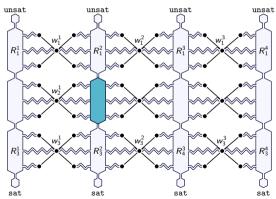
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
- 2 Implement constraints using carefully crafted gadgets
- group $\approx \log(\sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2)$ variables; one row for each group
- one column for each clause



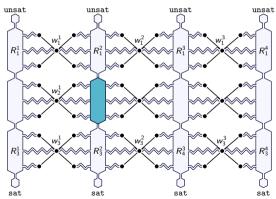
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
- 2 Implement constraints using carefully crafted gadgets
- group $\approx \log(\sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2)$ variables; one row for each group
- one column for each clause
- states of information vertices encode the assignment for each group



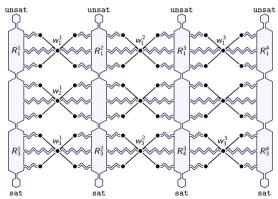
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
- 2 Implement constraints using carefully crafted gadgets
- group $\approx \log(\sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2)$ variables; one row for each group
- one column for each clause
- states of information vertices encode the assignment for each group
- relation R_i^j checks if assignment to *i*th group satisfies *j*th clause



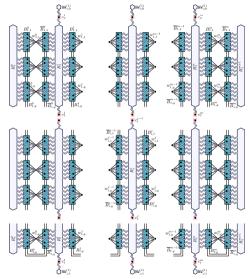
- 1 Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
- 2 Implement constraints using carefully crafted gadgets
- group $\approx \log(\sigma_{\text{top}} + \rho_{\text{top}} + 2)$ variables; one row for each group
- one column for each clause
- states of information vertices encode the assignment for each group
- relation R_i^j checks if assignment to *i*th group satisfies *j*th clause
- relations are realized using Hamming weight = 1 and equality



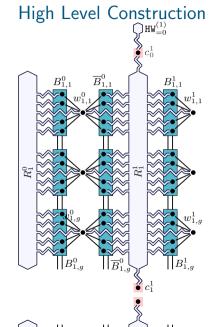
- **1** Reduce #SAT to $\#(\sigma, \rho)$ -Dominating Set with constraints
- 2 Implement constraints using carefully crafted gadgets
- group $\approx \log(\sigma_{\mathsf{top}} + \rho_{\mathsf{top}} + 2)$ variables; one row for each group
- one column for each clause
- states of information vertices encode the assignment for each group
- relation R_i^j checks if assignment to *i*th group satisfies *j*th clause
- relations are realized using Hamming weight = 1 and equality

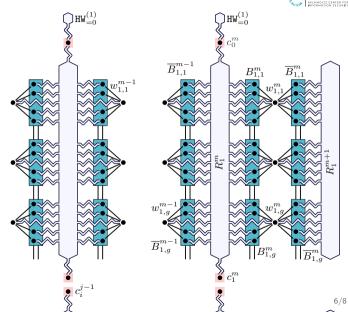


High Level Construction

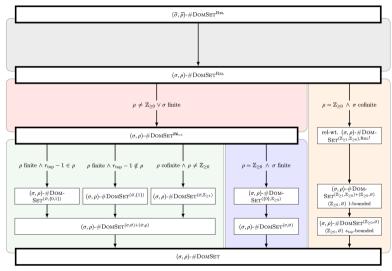


CISPA HELMHOLIZ CENTER FOR INFORMATION SECURITY





Removing the Relations in the Counting Version (simplified)



Removing the Relations in the Counting Version

