
Tight Complexity Bounds for
Counting Generalized Dominating Sets in

Bounded-Treewidth Graphs

Jacob Focke1 Dániel Marx1 Fionn Mc Inerney1 Daniel Neuen2

Govind S. Sankar3 Philipp Schepper1 Philip Wellnitz4

1 CISPA Helmholtz Center for Information Security
2 Simon Fraser University

3 Duke University
4 MPI Informatics, SIC

January 24, 2023

Counting Vertex Selections on Graphs with Small Treewidth

#Independent Set

Count size-k subsets S ⊆ V (G)
of pairwise nonadjacent vertices.

G

2tw(G) · poly(|G|) algorithm [N’06]

given a tree decomposition of width tw(G)

No (2− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

#Dominating Set

Count size-k subsets S ⊆ V (G)
whose neighborhoods cover V (G) \ S.

G

3tw(G) · poly(|G|) algorithm [vRBR’09]

given a tree decomposition of width tw(G)

No (3− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

Strong Exponential Time Hypothesis (SETH):
For any ‹ > 0, there is a large enough k such that there is no (2− ‹)n algorithm for k-CNF-SAT.

2/13

Counting Vertex Selections on Graphs with Small Treewidth

#Independent Set

Count size-k subsets S ⊆ V (G)
of pairwise nonadjacent vertices.

G

2tw(G) · poly(|G|) algorithm [N’06]

given a tree decomposition of width tw(G)

No (2− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

#Dominating Set

Count size-k subsets S ⊆ V (G)
whose neighborhoods cover V (G) \ S.

G

3tw(G) · poly(|G|) algorithm [vRBR’09]

given a tree decomposition of width tw(G)

No (3− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

Strong Exponential Time Hypothesis (SETH):
For any ‹ > 0, there is a large enough k such that there is no (2− ‹)n algorithm for k-CNF-SAT.

2/13

Counting Vertex Selections on Graphs with Small Treewidth

#Independent Set

Count size-k subsets S ⊆ V (G)
of pairwise nonadjacent vertices.

G

2tw(G) · poly(|G|) algorithm [N’06]

given a tree decomposition of width tw(G)

No (2− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

#Dominating Set

Count size-k subsets S ⊆ V (G)
whose neighborhoods cover V (G) \ S.

G

3tw(G) · poly(|G|) algorithm [vRBR’09]

given a tree decomposition of width tw(G)

No (3− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

Strong Exponential Time Hypothesis (SETH):
For any ‹ > 0, there is a large enough k such that there is no (2− ‹)n algorithm for k-CNF-SAT.

2/13

Counting Vertex Selections on Graphs with Small Treewidth

#Independent Set

Count size-k subsets S ⊆ V (G)
of pairwise nonadjacent vertices.

G

2tw(G) · poly(|G|) algorithm [N’06]

given a tree decomposition of width tw(G)

No (2− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

#Dominating Set

Count size-k subsets S ⊆ V (G)
whose neighborhoods cover V (G) \ S.

G

3tw(G) · poly(|G|) algorithm [vRBR’09]

given a tree decomposition of width tw(G)

No (3− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

Strong Exponential Time Hypothesis (SETH):
For any ‹ > 0, there is a large enough k such that there is no (2− ‹)n algorithm for k-CNF-SAT.

2/13

Counting Vertex Selections on Graphs with Small Treewidth

#Independent Set

Count size-k subsets S ⊆ V (G)
of pairwise nonadjacent vertices.

G

2tw(G) · poly(|G|) algorithm [N’06]

given a tree decomposition of width tw(G)

No (2− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

#Dominating Set

Count size-k subsets S ⊆ V (G)
whose neighborhoods cover V (G) \ S.

G

3tw(G) · poly(|G|) algorithm [vRBR’09]

given a tree decomposition of width tw(G)

No (3− ")tw(G) · poly(|G|) algorithm
(under SETH) [LMS’18]

Strong Exponential Time Hypothesis (SETH):
For any ‹ > 0, there is a large enough k such that there is no (2− ‹)n algorithm for k-CNF-SAT.

2/13

A Generalized Problem

#Independent Set

Count size-k subsets S ⊆ V (G)
of pairwise nonadjacent vertices.

G

#Dominating Set

Count size-k subsets S ⊆ V (G)
whose neighborhoods cover V (G) \ S.

G

#(ff; )-Dominating Set for fixed ff;  ⊆ N [Telle’94]

Given a graph G, count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ ff,
for all s =∈ S: |N(s) ∩ S| ∈ .

We consider finite or cofinite ff and .

3/13

A Generalized Problem

#Independent Set

Count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ {0}
and for all s =∈ S: |N(s) ∩ S| ∈ N.

G

#Dominating Set

Count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ N
and for all s =∈ S: |N(s) ∩ S| ∈ N \ {0}.

G

#(ff; )-Dominating Set for fixed ff;  ⊆ N [Telle’94]

Given a graph G, count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ ff,
for all s =∈ S: |N(s) ∩ S| ∈ .

We consider finite or cofinite ff and .

3/13

A Generalized Problem

#Independent Set

Count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ {0}
and for all s =∈ S: |N(s) ∩ S| ∈ N.

G

#Dominating Set

Count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ N
and for all s =∈ S: |N(s) ∩ S| ∈ N \ {0}.

G

#(ff; )-Dominating Set for fixed ff;  ⊆ N [Telle’94]

Given a graph G, count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ ff,
for all s =∈ S: |N(s) ∩ S| ∈ .

We consider finite or cofinite ff and .
3/13

A Generalized Problem

#({0};N)-Dominating Set

Count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ {0}
and for all s =∈ S: |N(s) ∩ S| ∈ N.

G

#(N;N \ {0})-Dominating Set

Count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ N
and for all s =∈ S: |N(s) ∩ S| ∈ N \ {0}.

G

#(ff; )-Dominating Set for fixed ff;  ⊆ N [Telle’94]

Given a graph G, count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ ff,
for all s =∈ S: |N(s) ∩ S| ∈ .

We consider finite or cofinite ff and .
3/13

#(ff; )-Dominating Set Is Relevant

#(ff; )-Dominating Set for fixed ff;  ⊆ N [Telle’94]

Given a graph G, count S ⊆ V (G) with |S| = k s.t.
for all s ∈ S: |N(s) ∩ S| ∈ ff and for all s =∈ S: |N(s) ∩ S| ∈ .

This generalizes many well-known problems including

Classical name ff 

Independent Set {0} N
Dominating Set N N \ {0}
Strong Independent Set {0} {0; 1}
Independent Dominating Set {0} N \ {0}
Perfect Code/Exact Independent Dominating Set {0} {1}
Total Dominating Set N \ {0} N \ {0}
Perfect Dominating Set N {1}
Induced Bounded-Degree Subgraph {0; 1; : : : ; d} N
Induced d-Regular Subgraph {d} N

4/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

About Partial Solutions
Consider finite ff = {0; 2} and cofinite  = {1; 4; 5; 6; 7; : : : } = N \ {0; 2; 3}
A separator X, a side L ⊇ X of the separated graph, a partial solution S for L

L

X

Consider a selected vertex v in X ∩ S:

> 2 neighbors in S? S is invalid!

0; 1, or 2 neighbors possible

 3 = maxff + 1 states

Consider an unselected vertex in X \ S:

No bound for number of neighbors

Last “bad” state is “3 neighbors”;
Cannot distinguish 4; 5; : : : neighbors
(v does not care if it gets further neighbors)

0; 1; 2; 3, or “≥ 4” neighbors possible

 5 = max(Z \ ) + 2 states

Consider (3 + 5)|X| = ((maxff + 1) + (max(Z \ ) + 2))|X| states for the vertices in X.

5/13

Solving #(ff; )-Dominating Set

fftop :=

(
maxff for finite ff;

1 + max(Z \ ff) for cofinite ff:
top :=

(
max  for finite ;

1 + max(Z \ ) for cofinite :

Previous observations and fast convolution techniques give:

Theorem (van Rooij’20)

#(ff; )-Dominating Set can be solved in time (fftop + top + 2)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

ff  Runtime (ignoring polynomial terms)

#Independent Set {0} N

(0 + 0 + 2)tw = 2tw tight

#Dominating Set N N \ {0}

(0 + 1 + 2)tw = 3tw tight

#Ind d-reg Subgraph {d} N

(d + 0 + 2)tw = (d + 2)tw ?

#Perfect Code {0} {1}

(0 + 1 + 2)tw = 3tw ?

Question: Is this algorithm optimal?
No! We improve it for many (ff; ) and show that our improvement is optimal.

6/13

Solving #(ff; )-Dominating Set

fftop :=

(
maxff for finite ff;

1 + max(Z \ ff) for cofinite ff:
top :=

(
max  for finite ;

1 + max(Z \ ) for cofinite :
Previous observations and fast convolution techniques give:

Theorem (van Rooij’20)

#(ff; )-Dominating Set can be solved in time (fftop + top + 2)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

ff  Runtime (ignoring polynomial terms)

#Independent Set {0} N

(0 + 0 + 2)tw = 2tw tight

#Dominating Set N N \ {0}

(0 + 1 + 2)tw = 3tw tight

#Ind d-reg Subgraph {d} N

(d + 0 + 2)tw = (d + 2)tw ?

#Perfect Code {0} {1}

(0 + 1 + 2)tw = 3tw ?

Question: Is this algorithm optimal?
No! We improve it for many (ff; ) and show that our improvement is optimal.

6/13

Solving #(ff; )-Dominating Set

fftop :=

(
maxff for finite ff;

1 + max(Z \ ff) for cofinite ff:
top :=

(
max  for finite ;

1 + max(Z \ ) for cofinite :
Previous observations and fast convolution techniques give:

Theorem (van Rooij’20)

#(ff; )-Dominating Set can be solved in time (fftop + top + 2)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

ff  Runtime (ignoring polynomial terms)

#Independent Set {0} N (0 + 0 + 2)tw = 2tw

tight

#Dominating Set N N \ {0} (0 + 1 + 2)tw = 3tw

tight

#Ind d-reg Subgraph {d} N (d + 0 + 2)tw = (d + 2)tw

?

#Perfect Code {0} {1} (0 + 1 + 2)tw = 3tw

?

Question: Is this algorithm optimal?
No! We improve it for many (ff; ) and show that our improvement is optimal.

6/13

Solving #(ff; )-Dominating Set

fftop :=

(
maxff for finite ff;

1 + max(Z \ ff) for cofinite ff:
top :=

(
max  for finite ;

1 + max(Z \ ) for cofinite :
Previous observations and fast convolution techniques give:

Theorem (van Rooij’20)

#(ff; )-Dominating Set can be solved in time (fftop + top + 2)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

ff  Runtime (ignoring polynomial terms)

#Independent Set {0} N (0 + 0 + 2)tw = 2tw tight
#Dominating Set N N \ {0} (0 + 1 + 2)tw = 3tw tight
#Ind d-reg Subgraph {d} N (d + 0 + 2)tw = (d + 2)tw

?

#Perfect Code {0} {1} (0 + 1 + 2)tw = 3tw

?

Question: Is this algorithm optimal?
No! We improve it for many (ff; ) and show that our improvement is optimal.

6/13

Solving #(ff; )-Dominating Set

fftop :=

(
maxff for finite ff;

1 + max(Z \ ff) for cofinite ff:
top :=

(
max  for finite ;

1 + max(Z \ ) for cofinite :
Previous observations and fast convolution techniques give:

Theorem (van Rooij’20)

#(ff; )-Dominating Set can be solved in time (fftop + top + 2)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

ff  Runtime (ignoring polynomial terms)

#Independent Set {0} N (0 + 0 + 2)tw = 2tw tight
#Dominating Set N N \ {0} (0 + 1 + 2)tw = 3tw tight
#Ind d-reg Subgraph {d} N (d + 0 + 2)tw = (d + 2)tw ?
#Perfect Code {0} {1} (0 + 1 + 2)tw = 3tw ?

Question: Is this algorithm optimal?

No! We improve it for many (ff; ) and show that our improvement is optimal.

6/13

Solving #(ff; )-Dominating Set

fftop :=

(
maxff for finite ff;

1 + max(Z \ ff) for cofinite ff:
top :=

(
max  for finite ;

1 + max(Z \ ) for cofinite :
Previous observations and fast convolution techniques give:

Theorem (van Rooij’20)

#(ff; )-Dominating Set can be solved in time (fftop + top + 2)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

ff  Runtime (ignoring polynomial terms)

#Independent Set {0} N (0 + 0 + 2)tw = 2tw tight
#Dominating Set N N \ {0} (0 + 1 + 2)tw = 3tw tight
#Ind d-reg Subgraph {d} N (d + 0 + 2)tw = (d + 2)tw ?
#Perfect Code {0} {1} (0 + 1 + 2)tw = 3tw ?

Question: Is this algorithm optimal?
No! We improve it for many (ff; ) and show that our improvement is optimal.

6/13

Structured Pairs

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Examples:
ff  m-structured for

{1; 3} {4}

m = 2

{0; 4} {1; 9}

m = 2; 4

{0} {1}

every m ≥ 2

{0; 3} {1; 5}

no m ≥ 2

{d} N

no m ≥ 2

If (ff; ) is m-structured for some m ≥ 2, we can get an improved algorithm.

7/13

Structured Pairs

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Examples:
ff  m-structured for

{1; 3} {4} m = 2
{0; 4} {1; 9}

m = 2; 4

{0} {1}

every m ≥ 2

{0; 3} {1; 5}

no m ≥ 2

{d} N

no m ≥ 2

If (ff; ) is m-structured for some m ≥ 2, we can get an improved algorithm.

7/13

Structured Pairs

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Examples:
ff  m-structured for

{1; 3} {4} m = 2
{0; 4} {1; 9} m = 2; 4
{0} {1}

every m ≥ 2

{0; 3} {1; 5}

no m ≥ 2

{d} N

no m ≥ 2

If (ff; ) is m-structured for some m ≥ 2, we can get an improved algorithm.

7/13

Structured Pairs

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Examples:
ff  m-structured for

{1; 3} {4} m = 2
{0; 4} {1; 9} m = 2; 4
{0} {1} every m ≥ 2
{0; 3} {1; 5}

no m ≥ 2

{d} N

no m ≥ 2

If (ff; ) is m-structured for some m ≥ 2, we can get an improved algorithm.

7/13

Structured Pairs

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Examples:
ff  m-structured for

{1; 3} {4} m = 2
{0; 4} {1; 9} m = 2; 4
{0} {1} every m ≥ 2
{0; 3} {1; 5} no m ≥ 2
{d} N no m ≥ 2

If (ff; ) is m-structured for some m ≥ 2, we can get an improved algorithm.

7/13

Structured Pairs

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Examples:
ff  m-structured for

{1; 3} {4} m = 2
{0; 4} {1; 9} m = 2; 4
{0} {1} every m ≥ 2
{0; 3} {1; 5} no m ≥ 2
{d} N no m ≥ 2

If (ff; ) is m-structured for some m ≥ 2, we can get an improved algorithm.

7/13

Our Contribution

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Theorem (Upper Bounds)

#(ff; )-Dominating Set can be solved in time (cff;)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(ff; )-Dominating Set has no (cff; − ")tw(G) · poly(|G|) algo
for non-trivial, finite or cofinite ff; , even if a tree decomposition of width tw(G) is given.

8/13

Our Contribution

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Theorem (Upper Bounds)

#(ff; )-Dominating Set can be solved in time (cff;)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(ff; )-Dominating Set has no (cff; − ")tw(G) · poly(|G|) algo
for non-trivial, finite or cofinite ff; , even if a tree decomposition of width tw(G) is given.

8/13

Our Contribution

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Theorem (Upper Bounds)

#(ff; )-Dominating Set can be solved in time (cff;)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(ff; )-Dominating Set has no (cff; − ")tw(G) · poly(|G|) algo
for non-trivial, finite or cofinite ff; , even if a tree decomposition of width tw(G) is given.

8/13

Implications of the New Results

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

ff  m-structured for Runtime (ignoring polynomial terms)

#Independent Set {0} N no m ≥ 2 2tw tight
#Dominating Set N N \ {0} no m ≥ 2 3tw tight
#Ind d-reg Subgraph {d} N no m ≥ 2 (d + 2)tw ?
#Perfect Code {0} {1} every m ≥ 2 3tw ?

9/13

Implications of the New Results

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

ff  m-structured for Runtime (ignoring polynomial terms)

#Independent Set {0} N no m ≥ 2 2tw tight
#Dominating Set N N \ {0} no m ≥ 2 3tw tight
#Ind d-reg Subgraph {d} N no m ≥ 2 (d + 2)tw tight
#Perfect Code {0} {1} every m ≥ 2 3tw ?

9/13

Implications of the New Results

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

ff  m-structured for Runtime (ignoring polynomial terms)

#Independent Set {0} N no m ≥ 2 2tw tight
#Dominating Set N N \ {0} no m ≥ 2 3tw tight
#Ind d-reg Subgraph {d} N no m ≥ 2 (d + 2)tw tight
#Perfect Code {0} {1} every m ≥ 2 ��HH3tw 2tw tight

9/13

Upper Bound

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Note: Cofinite sets are not m-structured. Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:

Only a reduced number of states has to be considered

Existing convolution techniques can be extended to handle join nodes efficiently

10/13

Upper Bound

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Note: Cofinite sets are not m-structured. Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:

Only a reduced number of states has to be considered

Existing convolution techniques can be extended to handle join nodes efficiently

10/13

Upper Bound

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Note: Cofinite sets are not m-structured. Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:

Only a reduced number of states has to be considered

Existing convolution techniques can be extended to handle join nodes efficiently

10/13

Upper Bound

m-structured (ff; )

For m ≥ 2, (ff; ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈  we have r ≡ ˛ mod m.

Note: Cofinite sets are not m-structured. Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:

Only a reduced number of states has to be considered

Existing convolution techniques can be extended to handle join nodes efficiently

10/13

A Better Bound for the Number of States
Recall: Each vertex can have maxff + max + 2 states. (ff,  are finite!)
 For a set of k vertices, (maxff + max + 2)k combinations must be to considered

Assume (ff; ) is m-structured (e.g., m = 2):

The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

Selection state and number of neighbors are “orthogonal” properties

 Many combinations are ruled out

Key Lemma (Upper Bounds)

For m-structured (ff; ), the number of partial solutions for a separator of size k is

≈ (max(ff ∪ ) + 2)k for m = 2 and maxff = max  even,

≈ (max(ff ∪ ) + 1)k otherwise.

11/13

A Better Bound for the Number of States
Recall: Each vertex can have maxff + max + 2 states. (ff,  are finite!)
 For a set of k vertices, (maxff + max + 2)k combinations must be to considered

Assume (ff; ) is m-structured (e.g., m = 2):

The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

Selection state and number of neighbors are “orthogonal” properties

 Many combinations are ruled out

Key Lemma (Upper Bounds)

For m-structured (ff; ), the number of partial solutions for a separator of size k is

≈ (max(ff ∪ ) + 2)k for m = 2 and maxff = max  even,

≈ (max(ff ∪ ) + 1)k otherwise.

11/13

A Better Bound for the Number of States
Recall: Each vertex can have maxff + max + 2 states. (ff,  are finite!)
 For a set of k vertices, (maxff + max + 2)k combinations must be to considered

Assume (ff; ) is m-structured (e.g., m = 2):

The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

Selection state and number of neighbors are “orthogonal” properties

 Many combinations are ruled out

Key Lemma (Upper Bounds)

For m-structured (ff; ), the number of partial solutions for a separator of size k is

≈ (max(ff ∪ ) + 2)k for m = 2 and maxff = max  even,

≈ (max(ff ∪ ) + 1)k otherwise.

11/13

A Better Bound for the Number of States
Recall: Each vertex can have maxff + max + 2 states. (ff,  are finite!)
 For a set of k vertices, (maxff + max + 2)k combinations must be to considered

Assume (ff; ) is m-structured (e.g., m = 2):

The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

Selection state and number of neighbors are “orthogonal” properties

 Many combinations are ruled out

Key Lemma (Upper Bounds)

For m-structured (ff; ), the number of partial solutions for a separator of size k is

≈ (max(ff ∪ ) + 2)k for m = 2 and maxff = max  even,

≈ (max(ff ∪ ) + 1)k otherwise.

11/13

A Better Bound for the Number of States
Recall: Each vertex can have maxff + max + 2 states. (ff,  are finite!)
 For a set of k vertices, (maxff + max + 2)k combinations must be to considered

Assume (ff; ) is m-structured (e.g., m = 2):

The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

Selection state and number of neighbors are “orthogonal” properties

 Many combinations are ruled out

Key Lemma (Upper Bounds)

For m-structured (ff; ), the number of partial solutions for a separator of size k is

≈ (max(ff ∪ ) + 2)k for m = 2 and maxff = max  even,

≈ (max(ff ∪ ) + 1)k otherwise.

11/13

Decision Version

Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 ∈ )

Lower bounds can be adjusted for finite ff and 

For cofinite ff or :

Use technique of representative sets to store fewer states

Number of partial solutions stored ≈ number of missing degrees better algorithm

Definition: cost(fi) := max(fi) if fi is finite and cost(fi) := |N \ fi | if fi is cofinite.

Theorem

(ff; )-Dominating Set can be solved in time (max{cost(ff); cost()}+ 1)(!+2)tw · nO(1)

for (co)finite ff; , given a tree decomposition of width tw with ! as matrix multiplication exponent.

Example for ff = {0},  = N \ {1000}:
The previous 1002tw algorithm is improved to get a 2(!+2)tw < 21tw algorithm

12/13

Decision Version

Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 ∈ )

Lower bounds can be adjusted for finite ff and 

For cofinite ff or :

Use technique of representative sets to store fewer states

Number of partial solutions stored ≈ number of missing degrees better algorithm

Definition: cost(fi) := max(fi) if fi is finite and cost(fi) := |N \ fi | if fi is cofinite.

Theorem

(ff; )-Dominating Set can be solved in time (max{cost(ff); cost()}+ 1)(!+2)tw · nO(1)

for (co)finite ff; , given a tree decomposition of width tw with ! as matrix multiplication exponent.

Example for ff = {0},  = N \ {1000}:
The previous 1002tw algorithm is improved to get a 2(!+2)tw < 21tw algorithm

12/13

Decision Version

Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 ∈ )

Lower bounds can be adjusted for finite ff and 

For cofinite ff or :

Use technique of representative sets to store fewer states

Number of partial solutions stored ≈ number of missing degrees better algorithm

Definition: cost(fi) := max(fi) if fi is finite and cost(fi) := |N \ fi | if fi is cofinite.

Theorem

(ff; )-Dominating Set can be solved in time (max{cost(ff); cost()}+ 1)(!+2)tw · nO(1)

for (co)finite ff; , given a tree decomposition of width tw with ! as matrix multiplication exponent.

Example for ff = {0},  = N \ {1000}:
The previous 1002tw algorithm is improved to get a 2(!+2)tw < 21tw algorithm

12/13

Decision Version

Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 ∈ )

Lower bounds can be adjusted for finite ff and 

For cofinite ff or :

Use technique of representative sets to store fewer states

Number of partial solutions stored ≈ number of missing degrees better algorithm

Definition: cost(fi) := max(fi) if fi is finite and cost(fi) := |N \ fi | if fi is cofinite.

Theorem

(ff; )-Dominating Set can be solved in time (max{cost(ff); cost()}+ 1)(!+2)tw · nO(1)

for (co)finite ff; , given a tree decomposition of width tw with ! as matrix multiplication exponent.

Example for ff = {0},  = N \ {1000}:
The previous 1002tw algorithm is improved to get a 2(!+2)tw < 21tw algorithm

12/13

Decision Version

Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 ∈ )

Lower bounds can be adjusted for finite ff and 

For cofinite ff or :

Use technique of representative sets to store fewer states

Number of partial solutions stored ≈ number of missing degrees better algorithm

Definition: cost(fi) := max(fi) if fi is finite and cost(fi) := |N \ fi | if fi is cofinite.

Theorem

(ff; )-Dominating Set can be solved in time (max{cost(ff); cost()}+ 1)(!+2)tw · nO(1)

for (co)finite ff; , given a tree decomposition of width tw with ! as matrix multiplication exponent.

Example for ff = {0},  = N \ {1000}:
The previous 1002tw algorithm is improved to get a 2(!+2)tw < 21tw algorithm

12/13

Decision Version

Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 ∈ )

Lower bounds can be adjusted for finite ff and 

For cofinite ff or :

Use technique of representative sets to store fewer states

Number of partial solutions stored ≈ number of missing degrees better algorithm

Definition: cost(fi) := max(fi) if fi is finite and cost(fi) := |N \ fi | if fi is cofinite.

Theorem

(ff; )-Dominating Set can be solved in time (max{cost(ff); cost()}+ 1)(!+2)tw · nO(1)

for (co)finite ff; , given a tree decomposition of width tw with ! as matrix multiplication exponent.

Example for ff = {0},  = N \ {1000}:
The previous 1002tw algorithm is improved to get a 2(!+2)tw < 21tw algorithm

12/13

Summary

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Optimal (cff;)tw · poly(|G|) algo for counting version, unless #SETH fails.

Optimal (cff;)tw · poly(|G|) algo for decision version with finite ff and , unless SETH fails.

Faster algorithm for decision version if (at least) one of ff and  is cofinite.

Full paper: arxiv.org/abs/2211.04278

13/13

arxiv.org/abs/2211.04278

Summary

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Optimal (cff;)tw · poly(|G|) algo for counting version, unless #SETH fails.

Optimal (cff;)tw · poly(|G|) algo for decision version with finite ff and , unless SETH fails.

Faster algorithm for decision version if (at least) one of ff and  is cofinite.

Full paper: arxiv.org/abs/2211.04278

13/13

arxiv.org/abs/2211.04278

Summary

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Optimal (cff;)tw · poly(|G|) algo for counting version, unless #SETH fails.

Optimal (cff;)tw · poly(|G|) algo for decision version with finite ff and , unless SETH fails.

Faster algorithm for decision version if (at least) one of ff and  is cofinite.

Full paper: arxiv.org/abs/2211.04278

13/13

arxiv.org/abs/2211.04278

Summary

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Optimal (cff;)tw · poly(|G|) algo for counting version, unless #SETH fails.

Optimal (cff;)tw · poly(|G|) algo for decision version with finite ff and , unless SETH fails.

Faster algorithm for decision version if (at least) one of ff and  is cofinite.

Full paper: arxiv.org/abs/2211.04278

13/13

arxiv.org/abs/2211.04278

Summary

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Optimal (cff;)tw · poly(|G|) algo for counting version, unless #SETH fails.

Optimal (cff;)tw · poly(|G|) algo for decision version with finite ff and , unless SETH fails.

Faster algorithm for decision version if (at least) one of ff and  is cofinite.

Full paper: arxiv.org/abs/2211.04278

13/13

arxiv.org/abs/2211.04278

Summary (formalized)

Definition

For finite or cofinite ff;  ⊆ N, we set
– cff; := fftop + top + 2 if (ff; ) is not m-structured,
– cff; := max{fftop; top}+ 2 if fftop = top is even and (ff; ) is 2-structured

(but not m ≥ 3-structured), and
– cff; := max{fftop; top}+ 1 otherwise.

Theorem (Upper Bounds)

#(ff; )-Dominating Set can be solved in time (cff;)tw(G) · poly(|G|)
if ff;  are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(ff; )-Dominating Set has no (cff; − ")tw(G) · poly(|G|) algo
for non-trivial, finite or cofinite ff; , even if a tree decomposition of width tw(G) is given.

2/8

Lower Bound
Use general idea from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set
with constraints

Constraints restrict the selection of vertices
to predefined combinations

This provides the power to check
if “clauses are satisfied”

2 Implement the constraints

Solutions that are easy to find,
have to be counted, too.
Use counting complexity techniques
and carefully designed gadgets
to overcome these issues

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

3/8

Lower Bound
Use general idea from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set
with constraints

Constraints restrict the selection of vertices
to predefined combinations
This provides the power to check
if “clauses are satisfied”

2 Implement the constraints

Solutions that are easy to find,
have to be counted, too.
Use counting complexity techniques
and carefully designed gadgets
to overcome these issues

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

3/8

Lower Bound
Use general idea from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set
with constraints

Constraints restrict the selection of vertices
to predefined combinations
This provides the power to check
if “clauses are satisfied”

2 Implement the constraints

Solutions that are easy to find,
have to be counted, too.
Use counting complexity techniques
and carefully designed gadgets
to overcome these issues

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

3/8

Lower Bound
Use general idea from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set
with constraints

Constraints restrict the selection of vertices
to predefined combinations
This provides the power to check
if “clauses are satisfied”

2 Implement the constraints

Solutions that are easy to find,
have to be counted, too.

Use counting complexity techniques
and carefully designed gadgets
to overcome these issues

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

3/8

Lower Bound
Use general idea from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set
with constraints

Constraints restrict the selection of vertices
to predefined combinations
This provides the power to check
if “clauses are satisfied”

2 Implement the constraints

Solutions that are easy to find,
have to be counted, too.
Use counting complexity techniques
and carefully designed gadgets
to overcome these issues

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

3/8

Decomposing Types Helps

Consider Perfect Code (ff = {0},  = {1}, m-structured for all m ≥ 2)

For a separator X and a partial solution S, we define
ff vector −→ff (S) ∈ {0; 1}|X| and weight vector −→w (S) ∈ {0; 1}|X|

Consider two partial solutions S; T for X:

Observe: −→ff (S) · −→w (T) ≡m −→ff (T) · −→w (S)

 ff-vectors are “orthogonal” to weight-vectors

Not too many solutions satisfy this “orthogonality” at the same time

L

X

~ff(T) 0 1 0 1 0
~w(T) 1 0 1 0 0

4/8

Decomposing Types Helps

Consider Perfect Code (ff = {0},  = {1}, m-structured for all m ≥ 2)

For a separator X and a partial solution S, we define
ff vector −→ff (S) ∈ {0; 1}|X| and weight vector −→w (S) ∈ {0; 1}|X|

Consider two partial solutions S; T for X:

Observe: −→ff (S) · −→w (T) ≡m −→ff (T) · −→w (S)

 ff-vectors are “orthogonal” to weight-vectors

Not too many solutions satisfy this “orthogonality” at the same time

L

X

~ff(S) 0 0 0 0 1
~w(S) 0 0 1 0 0

L

X

~ff(T) 0 1 0 1 0
~w(T) 1 0 1 0 0

4/8

Decomposing Types Helps

Consider Perfect Code (ff = {0},  = {1}, m-structured for all m ≥ 2)

For a separator X and a partial solution S, we define
ff vector −→ff (S) ∈ {0; 1}|X| and weight vector −→w (S) ∈ {0; 1}|X|

Consider two partial solutions S; T for X:

Observe: −→ff (S) · −→w (T) ≡m −→ff (T) · −→w (S)

 ff-vectors are “orthogonal” to weight-vectors

Not too many solutions satisfy this “orthogonality” at the same time

L

X

~ff(S) 0 0 0 0 1
~w(S) 0 0 1 0 0

L

X

~ff(T) 0 1 0 1 0
~w(T) 1 0 1 0 0

4/8

Decomposing Types Helps

Consider Perfect Code (ff = {0},  = {1}, m-structured for all m ≥ 2)

For a separator X and a partial solution S, we define
ff vector −→ff (S) ∈ {0; 1}|X| and weight vector −→w (S) ∈ {0; 1}|X|

Consider two partial solutions S; T for X:

Observe: −→ff (S) · −→w (T) ≡m −→ff (T) · −→w (S)

 ff-vectors are “orthogonal” to weight-vectors

Not too many solutions satisfy this “orthogonality” at the same time

L

X

~ff(S) 0 0 0 0 1
~w(S) 0 0 1 0 0

L

X

~ff(T) 0 1 0 1 0
~w(T) 1 0 1 0 0

4/8

Decomposing Types Helps

Consider Perfect Code (ff = {0},  = {1}, m-structured for all m ≥ 2)

For a separator X and a partial solution S, we define
ff vector −→ff (S) ∈ {0; 1}|X| and weight vector −→w (S) ∈ {0; 1}|X|

Consider two partial solutions S; T for X:

Observe: −→ff (S) · −→w (T) ≡m −→ff (T) · −→w (S) ff-vectors are “orthogonal” to weight-vectors

Not too many solutions satisfy this “orthogonality” at the same time

L

X

~ff(S) 0 0 0 0 1
~w(S) 0 0 1 0 0

L

X

~ff(T) 0 1 0 1 0
~w(T) 1 0 1 0 0

4/8

Decomposing Types Helps

Consider Perfect Code (ff = {0},  = {1}, m-structured for all m ≥ 2)

For a separator X and a partial solution S, we define
ff vector −→ff (S) ∈ {0; 1}|X| and weight vector −→w (S) ∈ {0; 1}|X|

Consider two partial solutions S; T for X:

Observe: −→ff (S) · −→w (T) ≡m −→ff (T) · −→w (S) ff-vectors are “orthogonal” to weight-vectors

Not too many solutions satisfy this “orthogonality” at the same time

Key Lemma (Upper Bounds)

For m-structured (ff; ), the number of partial solutions is

O((max{fftop; top}+ 2)tw) for m = 2 and fftop = top even,

O((max{fftop; top}+ 1)tw) otherwise.

4/8

Lower Bounds
Use general framework from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set with constraints

2 Implement constraints using carefully crafted gadgets

group ≈ log(fftop + top + 2) variables;
one row for each group

one column for each clause

states of information vertices encode the
assignment for each group

relation Rji checks if assignment
to ith group satisfies jth clause

relations are realized using
Hamming weight = 1 and equality

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

5/8

Lower Bounds
Use general framework from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set with constraints

2 Implement constraints using carefully crafted gadgets

group ≈ log(fftop + top + 2) variables;
one row for each group

one column for each clause

states of information vertices encode the
assignment for each group

relation Rji checks if assignment
to ith group satisfies jth clause

relations are realized using
Hamming weight = 1 and equality

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

5/8

Lower Bounds
Use general framework from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set with constraints

2 Implement constraints using carefully crafted gadgets

group ≈ log(fftop + top + 2) variables;
one row for each group

one column for each clause

states of information vertices encode the
assignment for each group

relation Rji checks if assignment
to ith group satisfies jth clause

relations are realized using
Hamming weight = 1 and equality

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

5/8

Lower Bounds
Use general framework from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set with constraints

2 Implement constraints using carefully crafted gadgets

group ≈ log(fftop + top + 2) variables;
one row for each group

one column for each clause

states of information vertices encode the
assignment for each group

relation Rji checks if assignment
to ith group satisfies jth clause

relations are realized using
Hamming weight = 1 and equality

1 - 2

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

5/8

Lower Bounds
Use general framework from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set with constraints

2 Implement constraints using carefully crafted gadgets

group ≈ log(fftop + top + 2) variables;
one row for each group

one column for each clause

states of information vertices encode the
assignment for each group

relation Rji checks if assignment
to ith group satisfies jth clause

relations are realized using
Hamming weight = 1 and equality

1 - 2

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

5/8

Lower Bounds
Use general framework from [CM16]:

1 Reduce #SAT to #(ff; )-Dominating Set with constraints

2 Implement constraints using carefully crafted gadgets

group ≈ log(fftop + top + 2) variables;
one row for each group

one column for each clause

states of information vertices encode the
assignment for each group

relation Rji checks if assignment
to ith group satisfies jth clause

relations are realized using
Hamming weight = 1 and equality

1 - 1

w 3
3

w 1
2

R3
1 R4

1

R3
4

w 1
1

w 1
3

w 2
1 w 3

1

w 2
3

unsat unsat unsat

sat satsat

R4
3R2

3

R2
1

sat

unsat

R1
1

R1
3

5/8

High Level Construction

1

R
0 t

w0
1,1

w0
1,g

c11

cji

c10

w0
t,g

c1t

cm1

cm0

cmt

wm
t,g

wm
1,1

wm
1,g

R
j i

R
m t

R
1 1

R
m 1

R
1 t

cj−1
i

w1
1,1

wm−1
1,1

wm−1
1,g

wm−1
t,g

wj
i,1

wj
i,g

wj−1
i,1

wj−1
i,g

w1
1,g

w1
t,g

B0
1,1

B0
1,g

B0
t,g

Bj
i,1

Bj
i,g

B
j−1
i,1

B
j−1
i,g

B
0
t,g

B
0
1,1

B
0
1,g

Bm
1,1

Bm
1,g

B
m
1,1

B
m
1,g

Bm
t,g B

m
t,g

B
m−1
t,gB1

t,g

B1
1,1

B1
1,g

B
m−1
1,1

B
m−1
1,g

R
m

+
1

1
R

m
+
1

t

R
0 1

HW
(1)
=0 HW

(1)
=0 HW

(1)
=0

HW
(1)
=1 HW

(1)
=1 HW

(1)
=1

6/8

High Level Construction

1

R
0 t

w0
1,1

w0
1,g

c11

cji

c10

w0
t,g

c1t

cm1

cm0

cmt

wm
t,g

wm
1,1

wm
1,g

R
j i

R
m t

R
1 1

R
m 1

R
1 t

cj−1
i

w1
1,1

wm−1
1,1

wm−1
1,g

wm−1
t,g

wj
i,1

wj
i,g

wj−1
i,1

wj−1
i,g

w1
1,g

w1
t,g

B0
1,1

B0
1,g

B0
t,g

Bj
i,1

Bj
i,g

B
j−1
i,1

B
j−1
i,g

B
0
t,g

B
0
1,1

B
0
1,g

Bm
1,1

Bm
1,g

B
m
1,1

B
m
1,g

Bm
t,g B

m
t,g

B
m−1
t,gB1

t,g

B1
1,1

B1
1,g

B
m−1
1,1

B
m−1
1,g

R
m

+
1

1
R

m
+
1

t

R
0 1

HW
(1)
=0 HW

(1)
=0 HW

(1)
=0

HW
(1)
=1 HW

(1)
=1 HW

(1)
=1

6/8

Removing the Relations in the Counting Version (simplified)

7/8

Removing the Relations in the Counting Version

8/8

	Generalized Dominating Sets
	Improved Bounds
	Conclusion
	Appendix

