Tight Complexity Bounds for
Counting Generalized Dominating Sets in
Bounded-Treewidth Graphs

Jacob Focke! Daniel Marx! Fionn Mc Inerney’ Daniel Neuen?
Govind S. Sankar® Philipp Schepper! Philip Wellnitz*

L CISPA Helmholtz Center for Information Security
2 Simon Fraser University
3 Duke University
4 MPI Informatics, SIC

January 24, 2023

Counting Vertex Selections on Graphs with Small Treewidth i e
#Independent Set

Count size-k subsets S C V/(G)
of pairwise nonadjacent vertices.

2/13

Counting Vertex Selections on Graphs with Small Treewidth i e
#Independent Set

Count size-k subsets S C V/(G)
of pairwise nonadjacent vertices.

m 28(C) . poly(|G|) algorithm [N'06]
given a tree decomposition of width tw(G)

m No (2 — £)™(%) . poly(|G|) algorithm
(under SETH) [LMS'18]

2/13

Counting Vertex Selections on Graphs with Small Treewidth i e
#Independent Set

Count size-k subsets S C V/(G)
of pairwise nonadjacent vertices.

m 28(C) . poly(|G|) algorithm [N'06]
given a tree decomposition of width tw(G)

m No (2 — £)™(%) . poly(|G|) algorithm
(under SETH) [LMS'18]

Strong Exponential Time Hypothesis (SETH):
For any § > 0, there is a large enough k such that there is no (2 — §)" algorithm for k-CNF-SAT.

2/13

Counting Vertex Selections on Graphs with Small Treewidth Lol

#Independent Set #Dominating Set
Count size-k subsets S C V/(G) Count size-k subsets S C V(G)
of pairwise nonadjacent vertices. whose neighborhoods cover V(G) \ S.

m 28(C) . poly(|G|) algorithm [N'06]
given a tree decomposition of width tw(G)

m No (2 — £)™(%) . poly(|G|) algorithm
(under SETH) [LMS'18]

Strong Exponential Time Hypothesis (SETH):
For any § > 0, there is a large enough k such that there is no (2 — §)" algorithm for k-CNF-SAT.

2/13

Counting Vertex Selections on Graphs with Small Treewidth

#Independent Set

Count size-k subsets S C V/(G)
of pairwise nonadjacent vertices.

m 28(C) . poly(|G|) algorithm [N'06]
given a tree decomposition of width tw(G)

m No (2 — £)™(©) . poly(|G|) algorithm
(under SETH) [LMS'18]

Strong Exponential Time Hypothesis (SETH):

Lo|CISPA

#Dominating Set

Count size-k subsets S C V(G)
whose neighborhoods cover V(G) \ S.

m 3™(%) . poly(|G|) algorithm [vRBR'09]
given a tree decomposition of width tw(G)

m No (3 — £)™(%) . poly(|G|) algorithm
(under SETH) [LMS’18]

For any § > 0, there is a large enough k such that there is no (2 — §)" algorithm for k-CNF-SAT.

2/13

H " ICISPA
A Generallzed Problem T | et e on

#Independent Set #Dominating Set
Count size-k subsets S C V(G) Count size-k subsets S C V(G)
of pairwise nonadjacent vertices. whose neighborhoods cover V(G) \ S.

3/13

A Generalized Problem

#Independent Set

Count S C V(G) with |S| = k s.t.

forall s € S: [N(s)n S| € {0}

and for all s ¢ S: |[N(s)N'S| € N.

Lo|CISPA

#Dominating Set

Count S C V(G) with |S| = k s.t.
forallse€ S: [N(s)NS| €N
and for all s ¢ S: [N(s)n'S| € N\ {0}.

3/13

H "ICISPA
A Generahzed PrOblem e | st

#Independent Set #Dominating Set

Count S C V(G) with |S| = k s.t. Count S C V(G) with |S| =k s.t.
forall s € S: [N(s)n S| € {0} forallse S: [N(s)nS| €N

and for all s ¢ S: |[N(s)nN'S| € N. and for all s ¢ S: [N(s)n'S| € N\ {0}.

#(o, p)-DOMINATING SET for fixed o, p C N [Telle'94]

Given a graph G, count S C V(G) with |S| = k s.t.
foralls € S: [N(s)NS| €0,
forall s ¢ S: [N(s) N S| € p.

We consider finite or cofinite o and p.
3/13

H "“ICISPA
A Generalized Problem

#({0}, N)-DOMINATING SET #(N,N\ {0})-DOMINATING SET
Count S C V(G) with |S| = k s.t. Count S C V(G) with |S| = k s.t.

for all s € S: [N(s) N S| € {0} forallse€ S: [N(s)NS| €N

and for all s ¢ S: |[N(s)nN'S| € N. and for all s ¢ S: |[N(s)n'S| € N\ {0}.

#(o, p)-DOMINATING SET for fixed o, p C N [Telle'94]

Given a graph G, count S C V(G) with |S| = k s.t.
foralls € S: [N(s)NS| €0,
forall s ¢ S: [N(s) N S| € p.

We consider finite or cofinite o and p.

#(o, p)-DOMINATING SET Is Relevant SRS

#(o, p)-DOMINATING SET for fixed o, p C N [Telle'94]

Given a graph G, count S C V(G) with |S| = k s.t.

foralls€ S: [N(s)NS|€o and foralls¢ S: |[N(s)NS| € p.

This generalizes many well-known problems including
Classical name o I
Independent Set {0} N
Dominating Set N N\ {0}
Strong Independent Set {0} {0,1}
Independent Dominating Set {0} N\ {0}
Perfect Code/Exact Independent Dominating Set {0} {1}
Total Dominating Set N\ {0} N\ {0}
Perfect Dominating Set N {1}
Induced Bounded-Degree Subgraph {0,1,...,d} N
Induced d-Regular Subgraph {d} N

4/13

. . " |CISPA
AbOUt Partlal SOlUtIOnS e | seseL s
Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}
A separator X, a side L D X of the separated graph, a partial solution S for L

5/13

About Partial Solutions La|CASEA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}
A separator X, a side L D X of the separated graph, a partial solution S for L

X octop)

[)
—o .,

L e -

5/13

About Partial Solutions La|CASEA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}
A separator X, a side L D X of the separated graph, a partial solution S for L

X cctrop)

.—-@s.

L *—w® .

Consider a selected vertex v in XN S:

m > 2 neighbors in 57 S is invalid!

5/13

About Partial Solutions La|CASEA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}
A separator X, a side L D X of the separated graph, a partial solution S for L

X cctrop)

o——@so

L *—w® .

Consider a selected vertex v in X N S:
m > 2 neighbors in 57 S is invalid!
m 0,1, or 2 neighbors possible

~~ 3 = maxo + 1 states

5/13

About Partial Solutions La|CASEA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}

A separator X, a side L D X of the separated graph, a partial solution S for L
CEEREYY
J C;. Consider an unselected vertex in X \ S:
L *—® \. m No bound for number of neighbors

Consider a selected vertex v in X N S:
m > 2 neighbors in 57 S is invalid!
m 0,1, or 2 neighbors possible

~~ 3 = maxo + 1 states

About Partial Solutions

Lo|CISPA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0,2,3}

A separator X, a side L D X of the separated graph,

X cctrop)

o——@so

L *—w® .

Consider a selected vertex v in X N S:
m > 2 neighbors in 57 S is invalid!
m 0,1, or 2 neighbors possible

~~ 3 = maxo + 1 states

Consider an unselected vertex in X \ S:
m No bound for number of neighbors

m Last “bad” state is “3 neighbors”;
Cannot distinguish 4,5, ... neighbors
(v does not care if it gets further neighbors)

a partial solution S for L

About Partial Solutions L.|C1SPA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}

A separator X, a side L D X of the separated graph, a partial solution S for L
CEEREYY
.’_@;. Consider an unselected vertex in X \ S:
L *—® \. m No bound for number of neighbors
m Last “bad” state is “3 neighbors”;
Consider a selected vertex v in X N S: Cannot distinguish 4,5, ... neighbors
m > 2 neighbors in 57 S is invalid! (v does not care if it gets further neighbors)
m 0,1, or 2 neighbors possible m 01,23, or “>4" neighbors possible
~» 3 = maxo + 1 states ~» b =max(Z \ p) + 2 states

About Partial Solutions Lo|CISPA

Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}

A separator X, a side L D X of the separated graph, a partial solution S for L
CEEREYY
.’_@;. Consider an unselected vertex in X \ S:
L *—® \. m No bound for number of neighbors
m Last “bad” state is “3 neighbors”;
Consider a selected vertex v in X N S: Cannot distinguish 4,5, ... neighbors
m > 2 neighbors in 57 S is invalid! (v does not care if it gets further neighbors)
m 0,1, or 2 neighbors possible m 01,23, or “>4" neighbors possible
~» 3 = maxo + 1 states ~» b =max(Z \ p) + 2 states

Consider (3 + 5)XI = ((maxo + 1) + (max(Z \ p) + 2))/X! states for the vertices in X.

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Solving #(o, p)-DOMINATING SET CoISERER

max o for finite o; max p for finite p;
o} = =
rop 1+ max(Z\ o) for cofinite o. Prop 1+ max(Z\ p) for cofinite p.

6/13

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Solving #(o, p)-DOMINATING SET CoISERER

max o for finite o; max p for finite p;
Otop = . Ptop = ..
1+ max(Z\ o) for cofinite o. 1+ max(Z\ p) for cofinite p.
Previous observations and fast convolution techniques give:
Theorem (van Rooij'20)

#(0, p)-DOMINATING SET can be solved in time (Gtop + pProp + 2)™(¢) - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

Solving #(a, p)-DOMINATING SET CIRIRES

max o for finite o; max p for finite p;
Otop = .. Ptop = -
1+ max(Z\ o) for cofinite o. 1+ max(Z\ p) for cofinite p.
Previous observations and fast convolution techniques give:
Theorem (van Rooij'20)

#(0, p)-DOMINATING SET can be solved in time (Gtop + pProp + 2)™(¢) - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

o p ‘ Runtime (ignoring polynomial terms)
#Independent Set {0} N (0+0+2)w =2
#Dominating Set N N\{0} | (0+1+2)W=3W
#Ind d-reg Subgraph {d} N (d+0+2)W = (d+2)™
#Perfect Code {0} {1} (041 +2)w =3tw

Solving #(a, p)-DOMINATING SET CIRIRES

max o for finite o; max p for finite p;
Otop = .. Ptop = -
1+ max(Z\ o) for cofinite o. 1+ max(Z\ p) for cofinite p.
Previous observations and fast convolution techniques give:
Theorem (van Rooij'20)

#(0, p)-DOMINATING SET can be solved in time (Gtop + pProp + 2)™(¢) - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

o p ‘ Runtime (ignoring polynomial terms)
Zindependent Set 00 N | (0+0r2™ =2~ tight
#Dominating Set N N\{0} | (0+1+2)W=3W tight
#Ind d-reg Subgraph {d} N (d+0+2)W = (d+2)™
#Perfect Code {0} {1} (04 1+2)w=3w

Solving #(a, p)-DOMINATING SET CIRIRES

max o for finite o; max p for finite p;
Otop = . Ptop = ..

1+ max(Z\ o) for cofinite o. 1+ max(Z\ p) for cofinite p.
Previous observations and fast convolution techniques give:

Theorem (van Rooij'20)

#(0, p)-DOMINATING SET can be solved in time (Gtop + pProp + 2)™(¢) - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

o p ‘ Runtime (ignoring polynomial terms)
#Independent Set {0} N (0+0+2)w =2 tight
#Dominating Set N N\{0} | (0+1+2)W=3W tight
#Ind d-reg Subgraph {d} N (d+0+2)W=(d+2)™ 7
#Perfect Code {0+ {1} | (0+1+42)w=3" ?

Question: s this algorithm optimal?

-
Solving #(a, p)-DOMINATING SET CIRIRES

max o for finite o; max p for finite p;
Otop = .. Ptop = -
1+ max(Z\ o) for cofinite o. 1+ max(Z\ p) for cofinite p.
Previous observations and fast convolution techniques give:
Theorem (van Rooij'20)

#(0, p)-DOMINATING SET can be solved in time (Gtop + pProp + 2)™(¢) - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

o p ‘ Runtime (ignoring polynomial terms)
#Independent Set {0} N (0+0+2)w =2 tight
#Dominating Set N N\{0} | (0+1+2)W=3W tight
#Ind d-reg Subgraph {d} N (d+0+2)W=(d+2)™ 7
#Perfect Code {0+ {1} | (0+1+42)w=3" ?

Question: s this algorithm optimal?
No! We improve it for many (o, p) and show that our improvement is optimal.

Structured Pairs

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and B such that
for all s € 0 we have s=amodm and forall r € p we have r = 8 mod m.

7/13

Structured Pairs La|CASEA

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=a modm and for all r € p we have r = 8 mod m.

Examples:

o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9}

{0y {1}
{0,3} {1,5}
{d} N

7/13

Structured Pairs La|CASEA

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=a modm and for all r € p we have r = 8 mod m.

Examples:
o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9} m=24
{0y {1}
{0.3y {1,5}
{d} N

7/13

Structured Pairs La|CASEA

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=a modm and for all r € p we have r = 8 mod m.

Examples:
o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9} m=24
{0} {1} every m > 2
{0,3} {1,5}
{d} N

7/13

Structured Pairs La|CASEA

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=a modm and for all r € p we have r = 8 mod m.

Examples:

o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9} m=24

{0} {1} every m > 2
{0,3} {1,5} nom > 2
{d} N nom>?2

7/13

-
Structured Pairs La|CASEA

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=a modm and for all r € p we have r = 8 mod m.

Examples:

o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9} m=24

{0} {1} every m > 2
{0,3} {1,5} nom > 2
{d} N nom>?2

If (o, p) is m-structured for some m > 2, we can get an improved algorithm.

7/13

Our Contribution

Definition
For finite or cofinite o, p C N, we set
= Co,p = Otop T Ptop + 2

if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2

if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Cop = max{atopy Ptop} +1 otherwise.

R EE————S———————
Our Contribution LIS RA
Definition

For finite or cofinite o, p C N, we set

— Cg,p = Otop + Prop + 2 if (0, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured

(but not m > 3-structured), and
—Cop = max{atopv ptop} +1 otherwise.

Theorem (Upper Bounds)

#(0, p)-DOMINATING SET can be solved in time (cy,,)™() - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

)) “|CISPA

Our Contribution b | Sttt

Definition

For finite or cofinite o, p C N, we set

— Cg,p = Otop + Prop + 2 if (0, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Cop = max{atopy ptop} +1 otherwise.

Theorem (Upper Bounds)

#(0, p)-DOMINATING SET can be solved in time (cy,,)™() - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(c, p)-DOMINATING SET has no (c,,, — €)™(©) - poly(|G|) algo

for non-trivial, finite or cofinite o, p, even if a tree decomposition of width tw(G) is given.

Implications of the New Results aISIShA

Definition

For finite or cofinite o, p C N, we set

— Co,p = Otop + Prop + 2 if (o, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured

(but not m > 3-structured), and

= Co.p = Max{Oiop, Prop} + 1 otherwise.
o p ‘ m-structured for Runtime (ignoring polynomial terms)

#lIndependent Set {0} N nom>?2 2t tight

#Dominating Set N N\ {0} nom > 2 3tw tight

#Ind d-reg Subgraph {d} N nom > 2 (d +2)™ ?

#Perfect Code {0} {1} every m > 2 3w ?

Implications of the New Results LGSR

Definition

For finite or cofinite o, p C N, we set

— Co,p = Otop + Prop + 2 if (o, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured

(but not m > 3-structured), and

= Co.p = Max{Oiop, Prop} + 1 otherwise.
o p ‘ m-structured for Runtime (ignoring polynomial terms)

#lIndependent Set {0} N nom>?2 2t tight

#Dominating Set N N\ {0} nom > 2 3tw tight

#Ind d-reg Subgraph {d} N nom>?2 (d +2)™ tight

#Perfect Code {0} {1} every m > 2 3w ?

Implications of the New Results LGSR

Definition

For finite or cofinite o, p C N, we set

= Co,p = Otop + Ptop + 2 if (o, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured

(but not m > 3-structured), and

= Co.p = Max{Oiop, Prop} + 1 otherwise.
o p ‘ m-structured for Runtime (ignoring polynomial terms)

#lIndependent Set {0} N nom>?2 2t tight

#Dominating Set N N\ {0} nom > 2 3tw tight

#Ind d-reg Subgraph {d} N nom>?2 (d +2)™ tight
#Perfect Code {0} {1} every m > 2 Rt tight

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Lo|CISPA

Upper Bound

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=amodm and for all r € p we have r = mod m.

Note: Cofinite sets are not m-structured. ~~» Only finite sets are relevant.

10/13

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Lo|CISPA

Upper Bound

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=amodm and for all r € p we have r = mod m.

Note: Cofinite sets are not m-structured. ~~» Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

10/13

Upper Bound coigisea
m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=amodm and for all r € p we have r = mod m.

Note: Cofinite sets are not m-structured. ~~» Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.
Then the standard dynamic program can be improved:
m Only a reduced number of states has to be considered

10/13

Upper Bound LIS RA

m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that

for all s € 0 we have s=amodm and for all r € p we have r = mod m.
Note: Cofinite sets are not m-structured. ~~» Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:
m Only a reduced number of states has to be considered

m Existing convolution techniques can be extended to handle join nodes efficiently

10/13

A Better Bound for the Number of States o

Recall: Each vertex can have max o + maxp + 2 states. (o, p are finite!)
~~ For a set of k vertices, (max o + max p + 2)¥ combinations must be to considered

11/13

A Better Bound for the Number of States

Recall: Each vertex can have max o + maxp + 2 states. (o, p are finite!)
~~ For a set of k vertices, (max o + max p + 2)¥ combinations must be to considered

Assume (o, p) is m-structured (e.g., m = 2):

m The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

11/13

A Better Bound for the Number of States

Recall: Each vertex can have max o + maxp + 2 states. (o, p are finite!)

~~ For a set of k vertices, (max o + max p + 2)¥ combinations must be to considered

Assume (o, p) is m-structured (e.g., m = 2):

m The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

m Selection state and number of neighbors are “orthogonal” properties

11/13

A Better Bound for the Number of States

Recall: Each vertex can have max o + maxp + 2 states. (o, p are finite!)

~~ For a set of k vertices, (max o + max p + 2)¥ combinations must be to considered
Assume (o, p) is m-structured (e.g., m = 2):

m The selection status of specific vertices determines the number of neighbors for other vertices
(think of it as some parity-like argument).

m Selection state and number of neighbors are “orthogonal” properties

~» Many combinations are ruled out

11/13

-
A Better Bound for the Number of States CoISERER

Recall: Each vertex can have max o + maxp + 2 states. (o, p are finite!)
~~ For a set of k vertices, (max o + max p + 2)¥ combinations must be to considered

Assume (o, p) is m-structured (e.g., m = 2):
m The selection status of specific vertices determines the number of neighbors for other vertices

(think of it as some parity-like argument).
m Selection state and number of neighbors are “orthogonal” properties

~» Many combinations are ruled out

Key Lemma (Upper Bounds)
For m-structured (o, p), the number of partial solutions for a separator of size k is
m ~ (max(o U p) +2) for m = 2 and maxo = maxp even,

m ~ (max(o U p) + 1) otherwise.

11/13

Decision Version

m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)

m Lower bounds can be adjusted for finite o and p

12/13

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
i.|CISPA

Decision Version

m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)

m Lower bounds can be adjusted for finite o and p

For cofinite o or p:
m Use technique of representative sets to store fewer states

12/13

e ————
Decision Version LLISASERA
m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)
m Lower bounds can be adjusted for finite o and p
For cofinite o or p:
m Use technique of representative sets to store fewer states
m Number of partial solutions stored ~ number of missing degrees ~~ better algorithm

12/13

e ————
. . . ~ICISPA
DeC|S|On Ver5|0n e | eSS 100
m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)
m Lower bounds can be adjusted for finite o and p

For cofinite o or p:
m Use technique of representative sets to store fewer states
m Number of partial solutions stored ~ number of missing degrees ~~ better algorithm

Definition: cost(T) := max(7) if T is finite and cost(T) := [N\ 7| if T is cofinite.

12/13

-
. . . "ICISPA
Decision Version

m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)
m Lower bounds can be adjusted for finite o and p
For cofinite o or p:
m Use technique of representative sets to store fewer states
m Number of partial solutions stored ~ number of missing degrees ~~ better algorithm

Definition: cost(T) := max(7) if T is finite and cost(T) := [N\ 7| if T is cofinite.

Theorem

(0, p)-DOMINATING SET can be solved in time (max{cost(c), cost(p)} + 1)(wH2)tw . nO(1)
for (co)finite o, p, given a tree decomposition of width tw with w as matrix multiplication exponent.

12/13

Decision Version
m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)
m Lower bounds can be adjusted for finite o and p
For cofinite o or p:
m Use technique of representative sets to store fewer states
m Number of partial solutions stored ~ number of missing degrees ~~ better algorithm
Definition: cost(T) := max(7) if T is finite and cost(T) := [N\ 7| if T is cofinite.
Theorem

(0, p)-DOMINATING SET can be solved in time (max{cost(c), cost(p)} + 1)«+2)tw . ,O(1)

for (co)finite o, p, given a tree decomposition of width tw with w as matrix multiplication exponent.

Example for o = {0}, p = N\ {1000}:
The previous 1002 algorithm is improved to get a 2(“+2™ < 21% 3]gorithm

12/13

Summary

Definition
For finite or cofinite o, p C N, we set
— Co,p = Otop + Ptop + 2

if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2

if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Cop = max{atopv Ptop} +1 otherwise.

13/13

arxiv.org/abs/2211.04278

Summary

Definition
For finite or cofinite o, p C N, we set
— Co,p = Otop + Ptop + 2

if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2

if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

max{0top, Prop} + 1 otherwise.

= G

m Optimal (cy,)™ - poly(|G]) algo for counting version, unless #SETH fails.

13/13

arxiv.org/abs/2211.04278

S ICISPA

Summary T | oS
Definition
For finite or cofinite o, p C N, we set
= Co,p = Otop + Ptop + 2 if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured

(but not m > 3-structured), and
— Cop = max{atopv ptop} +1 otherwise.

m Optimal (cy,)™ - poly(|G]) algo for counting version, unless #SETH fails.

m Optimal (c,,)™ - poly(|G|) algo for decision version with finite o and p, unless SETH fails.

13/13

arxiv.org/abs/2211.04278

““|CISPA
Summary
Definition
For finite or cofinite o, p C N, we set
= Co,p = Otop + Ptop + 2 if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured

(but not m > 3-structured), and

= Co.p = Max{Oiop, Prop} + 1 otherwise.

m Optimal (cy,)™ - poly(|G]) algo for counting version, unless #SETH fails.
m Optimal (c,,)™ - poly(|G|) algo for decision version with finite o and p, unless SETH fails.

m Faster algorithm for decision version if (at least) one of o and p is cofinite.

13/13

arxiv.org/abs/2211.04278

““|CISPA
Summary
Definition
For finite or cofinite o, p C N, we set
= Co,p = Otop + Ptop + 2 if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and
— Cop = max{atopv ptop} +1 otherwise.

m Optimal (cy,)™ - poly(|G]) algo for counting version, unless #SETH fails.
m Optimal (c,,)™ - poly(|G|) algo for decision version with finite o and p, unless SETH fails.

m Faster algorithm for decision version if (at least) one of o and p is cofinite.

Full paper: arxiv.org/abs/2211.04278

13/13

arxiv.org/abs/2211.04278

) “ICISPA

Summary (formalized) | i

Definition

For finite or cofinite o, p C N, we set

= Co,p = Otop T Ptop + 2 if (o, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Co.p = Max{0iop, Prop} + 1 otherwise.

Theorem (Upper Bounds)

#(0, p)-DOMINATING SET can be solved in time (cy,,)™() - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(c, p)-DOMINATING SET has no (c,,, — €)™(©) - poly(|G|) algo

for non-trivial, finite or cofinite o, p, even if a tree decomposition of width tw(G) is given.
2/8

Lower Bound

Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints

Lo|CISPA

unsat unsat unsat unsat

m Constraints restrict the selection of vertices
to predefined combinations

fﬁ
).
,
o

3
{83

233 %
N/

/
MRS

/-
A\

2338
N
Y&y

233 E
N
yaay

N N M
A0 W Wi W Wl il

o
%
%
J

®
»
o
]
]
o

3/8

Lower Bound

Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints

m Constraints restrict the selection of vertices
to predefined combinations

m This provides the power to check
if “clauses are satisfied”

unsat

gya

)

unsat

-E
5
A

unsat

-
.

Lo|CISPA

unsat

2338 E
N

iy
e

/-

A\

yaay
2338

&
Z N

S
FEE Y

233 %
N/

/.
FREY:

C)=<§

®
»
o

t ¢
%
o

B E
s

]
I
o

Dé%g

®
»
o

$ %%
) S

N\
22

of

]
]
o

Lower Bound

Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints

m Constraints restrict the selection of vertices
to predefined combinations

m This provides the power to check
if “clauses are satisfied”

2 Implement the constraints

unsat

gﬁ
g
o

unsat

unsat

Lo|CISPA

unsat

"
%
%
K

®
o
o

]
]
o

®
»
o

e B
SN N WA S B WO W

]
I
o

Lower Bound
Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints
m Constraints restrict the selection of vertices
to predefined combinations
m This provides the power to check
if “clauses are satisfied”
2 Implement the constraints

m Solutions that are easy to find,
have to be counted, too.

unsat

3
ié

%
%

unsat

g
o

3
/

unsat

2

J|CISPA

unsat

S

T
N
yaay.

/-

A\

2338
N

$EE g
2338
&/

/A

Y ERG.

s

®
o
o

3

e
SN
Dgi%f}

SR

5%
s
A\

]
]
o

R

C{f?

®
»
o

N4

oL

S

]
I
o

"ICISPA
LOW€ r BOU n d e | st

Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints
m Constraints restrict the selection of vertices
to predefined combinations
m This provides the power to check
if “clauses are satisfied”

unsat unsat unsat unsat

'
3
419

2338
N
Y&y

Déﬁ
N

ol

ot

¢

/-
A\
/-

233 E
N
yaay
233 %
N/
YRRy

2 Implement the constraints

m Solutions that are easy to find,
have to be counted, too.

m Use counting complexity techniques
and carefully designed gadgets
to overcome these issues

SR

iy
N§/
%o
LxJ
N§/
¢3S
N%
7N
2 ¢

®
»
o
]
I
o
®
»
o
]
]
o

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Lo|CISPA

Decomposing Types Helps
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)

4/8

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Lo|CISPA

Decomposing Types Helps
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)

m For a separator X and a partial solution S, we define
o vector 7 (S) € {0, 1}X! and weight vector w(S) € {0, 1}IX!

4/8

R R,
Decomposing Types Helps bk e
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)

m For a separator X and a partial solution S, we define
o vector 7 (S) € {0, 1}X! and weight vector w(S) € {0, 1}IX!

Consider two partial solutions S, T for X:

3S)o o 0 0 1 #T) o1 0 1 0
w(S)o 0 1 0 0 w(T) 1. 0 1 0 0
(X o o s o @] |[x —79—©J
L.\,(D<L\0 L o\© o

4/8

Decomposing Types Helps Lo|GISPA
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)

m For a separator X and a partial solution S, we define
o vector 7 (S) € {0, 1}X! and weight vector w(S) € {0, 1}IX!

Consider two partial solutions S, T for X:
m Observe: @ (S)- W(T) =, @ (T) W(S)

4/8

e EEEEEEEEEEEEEEEREREEERREEEEEEE———————
Lo|CISPA

Decomposing Types Helps
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)
m For a separator X and a partial solution S, we define
o vector o (S) € {0,1}X and weight vector W (S) e {0, 1}X!
Consider two partial solutions S, T for X:
m Observe: @ (S)- W(T) =y, @(T) - W(S) ~ o-vectors are “orthogonal” to weight-vectors
m Not too many solutions satisfy this “orthogonality” at the same time
S)o 0 0 0 1 FT) 0o 1 0
w(S)o 0 1 0 O w(T) 1 0 1

xorrop) [-T-wg

[]
O— S ——¢

L *—® . L @ ’

4/8

R R,
Decomposing Types Helps bk e
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)

m For a separator X and a partial solution S, we define
o vector 7 (S) € {0, 1}X! and weight vector w(S) € {0, 1}IX!
Consider two partial solutions S, T for X:
m Observe: @ (S)- W(T) =y, @(T) - W(S) ~ o-vectors are “orthogonal” to weight-vectors

m Not too many solutions satisfy this “orthogonality” at the same time

Key Lemma (Upper Bounds)

For m-structured (o, p), the number of partial solutions is
m O((max{otop, Prop} + 2)™) for m = 2 and oop = prop €ven,

m O((max{otop, Prop} + 1)™) otherwise.

4/8

R R,
“"ICISPA
Lower Bounds S | mmemmEnEIR
Use general framework from [CM16]:
1 Reduce #SAT to #(o, p)-DOMINATING SET with constraints

2 Implement constraints using carefully crafted gadgets

5/8

Lower Bounds
Use general framework from [CM16]:

Lo|CISPA

1 Reduce #SAT to #(o, p)-DOMINATING SET with constraints
2 Implement constraints using carefully crafted gadgets

m group ~ log(0iop + Prop + 2) variables;
one row for each group

m one column for each clause

unsat

1]
m(:‘;/\%
ot

%
¥

Y
o
&
%

4

3
)

%E

K/
&

i

5 6

(4 11
FR
£3 153 5
£3 753 ;

'§
CK;Q

4

sat sat S

&

«
<3

Lower Bounds
Use general framework from [CM16]:

Lo|CISPA

1 Reduce #SAT to #(o, p)-DOMINATING SET with constraints

2 Implement constraints using carefully crafted gadgets

m group ~ log(0iop + Prop + 2) variables;
one row for each group

m one column for each clause

m states of information vertices encode the
assignment for each group

unsat

Y
SR

1]
m(:‘;/\%
ot

s
;

%

%E

K/
&

i

y
g{%

3
(?
X
iy,
%{%

%
J

8
&
¥

4

3
4

o

3
8

.

sat sat S

&

o
=3

"ICISPA
Lower Bounds

Use general framework from [CM16]:
1 Reduce #SAT to #(o, p)-DOMINATING SET with constraints

2 Implement constraints using carefully crafted gadgets

unsat

g
17
&

m group ~ log(0iop + Prop + 2) variables;

one row for each group Sa“%wl MY

X8

Ri
m one column for each clause E//::\/ \A.ij
m states of information vertices encode the %W d,%f%:& Z>

{§
£
£

assignment for each group [//:/\/f
m relation R} checks if assignment)
to ith group satisfies jth clause

%
%
%

2

é g

3

é *
o 3,
g
2

é g
o S
¥
ol

S
ié
8
%

Y
%
K

sat S

&

o
=3

"ICISPA
Lower Bounds

Use general framework from [CM16]:
1 Reduce #SAT to #(o, p)-DOMINATING SET with constraints

2 Implement constraints using carefully crafted gadgets

g
17
&

&

f=]
B
1]
g,vam
ot

m group ~ log(0iop + Prop + 2) variables;
one row for each group

;
2

$1¥1)

£33 ;

W

m one column for each clause

&

m states of information vertices encode the
assignment for each group 0

8

m relation R{: checks if assignment
to ith group satisfies jth clause

%
%
%

é g
3

é *

o 3,

g

2

é g

o S

)

ol

$
ié
$
/4

m relations are realized using
Hamming weight = 1 and equality

%
%
K

[
o
o

sat S

&

o
=3

"ICISPA
Lower Bounds

Use general framework from [CM16]:
1 Reduce #SAT to #(o, p)-DOMINATING SET with constraints

2 Implement constraints using carefully crafted gadgets

unsat

ok
X

m group ~ log(0iop + Prop + 2) variables;
one row for each group

i

g/—\%3‘1
>

14

"

;g

"

: g

Y

m one column for each clause

m states of information vertices encode the
assignment for each group

m relation R{: checks if assignment
to ith group satisfies jth clause

Y
o
&
%
o

3
3
3

3
£
:
$

m relations are realized using
Hamming weight = 1 and equality

Y
%
%
K

sat sat S

&

o
=3

. "|CISPA

High Level Construction

g ww b ed k

%iiww %iiww ﬂ%ﬁ

T

6/8

High Level Construction

%]HWS& %ngg %ngg
& c 3 "
1,1 %

~

e
ey
AP
b i e
s

0
1,9
a
[

Removing the Relations in the Counting

Version (simplified)

J (3, 7)-#DomSETR="

|

1 (0, p)-#DoMSETRE

p # Z>o V o finite

p=1Zx A o cofinite

J (0, p)-#DoMSETM=1

p finite A rop —1 € p p finite A riop — 1 ¢ p p cofinite A p # Zxo

l | l

p=1Zso A o finite

l

‘ (2;:(;'(]7’)?)];‘- ‘ (mﬂ)*#DOMSET(“vU)]‘ (0, p)-#DOMSET(@221)

(0, p)-#DoM-
SET@21220)+Z20.2)
(Z>0,2) 1-bounded

(o, p)-#Dom-
SeT{0hZ20)

! ! !

!

‘ (0, p)-#DOMSET("2)+(@0) |

(0, p)-#DoMSET20,2)
(Z0,8) stop-bounded

‘ (0, p)-#DOMSET(*?)

!

!

]}
| (0, p)-#DOMSET

S"ICISPA

Lem. 912

relationrt
(2,7)-# Doser™™

Lem. 0.5

relationrt
(5,)-# DomSET®*

=

p)-#Donser:

0 # 220V o fite
Lem. 105

(0. p)-#DonSrm-15¢

(0,0} Dowser™-1

pBnite Ariy 1€ p

(5. Dows

phnite Arip — 1€

b cofinite

Lem. 1021

Removing the Relations in the Counting Version

20 A o cofinite

[

(o1 #Dow.
Spriz Zeno

Lem. 1050

(0.} DowSETY21

peofinite A p £ oo =T A o finite

Lom. 1020 Lem. 1018 Lom 1022 Lo 1039 Lem, 1052
e | ——— Sexo (0. Dow-

‘ oA ‘)#DonSET® D | | (0,4 Dowser !‘ ‘ o
Jpem. 1023 Jem 103 Jew 105 Jrem 1010

[—

(2.) DonsrE0)
20,2) suy-bounded

Tmra

Jien w03

(o, Do

]

R R,
““|CISPA

8/8

	Generalized Dominating Sets
	Improved Bounds
	Conclusion
	Appendix

