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A Generalized Problem

#Independent Set
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#(o, p)-DOMINATING SET Is Relevant SRS

#(o, p)-DOMINATING SET for fixed o, p C N [Telle'94]

Given a graph G, count S C V(G) with |S| = k s.t.

foralls€ S: [N(s)NS|€o and foralls¢ S: |[N(s)NS| € p.

This generalizes many well-known problems including
Classical name o I
Independent Set {0} N
Dominating Set N N\ {0}
Strong Independent Set {0} {0,1}
Independent Dominating Set {0} N\ {0}
Perfect Code/Exact Independent Dominating Set {0} {1}
Total Dominating Set N\ {0} N\ {0}
Perfect Dominating Set N {1}
Induced Bounded-Degree Subgraph {0,1,...,d} N
Induced d-Regular Subgraph {d} N
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A separator X, a side L D X of the separated graph, a partial solution S for L
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Consider finite o = {0, 2} and cofinite p = {1,4,5,6,7,...} =N\ {0, 2,3}

A separator X, a side L D X of the separated graph, a partial solution S for L
CEEREYY
.’_@;. Consider an unselected vertex in X \ S:
L *—® \. m No bound for number of neighbors
m Last “bad” state is “3 neighbors”;
Consider a selected vertex v in X N S: Cannot distinguish 4,5, ... neighbors
m > 2 neighbors in 57 S is invalid! (v does not care if it gets further neighbors)
m 0,1, or 2 neighbors possible m 01,23, or “>4" neighbors possible
~» 3 = maxo + 1 states ~» b =max(Z \ p) + 2 states

Consider (3 + 5)XI = ((maxo + 1) + (max(Z \ p) + 2))/X! states for the vertices in X.
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m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that
for all s € 0 we have s=a modm and for all r € p we have r = 8 mod m.

Examples:

o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9} m=24

{0} {1} every m > 2
{0,3} {1,5} nom > 2
{d} N nom>?2

If (o, p) is m-structured for some m > 2, we can get an improved algorithm.
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Our Contribution

Definition
For finite or cofinite o, p C N, we set
= Co,p = Otop T Ptop + 2

if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2

if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Cop = max{atopy Ptop} +1 otherwise.
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Definition

For finite or cofinite o, p C N, we set

— Cg,p = Otop + Prop + 2 if (0, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Cop = max{atopy ptop} +1 otherwise.

Theorem (Upper Bounds)

#(0, p)-DOMINATING SET can be solved in time (cy,,)™() - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(c, p)-DOMINATING SET has no (c,,, — €)™(©) - poly(|G|) algo

for non-trivial, finite or cofinite o, p, even if a tree decomposition of width tw(G) is given.
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m-structured (o, p)

For m > 2, (o, p) is m-structured if there are o and g such that

for all s € 0 we have s=amodm and for all r € p we have r =  mod m.
Note: Cofinite sets are not m-structured. ~~» Only finite sets are relevant.

Goal: Get a better bound for the number of states of (partial) solutions.

Then the standard dynamic program can be improved:
m Only a reduced number of states has to be considered

m Existing convolution techniques can be extended to handle join nodes efficiently
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Recall: Each vertex can have max o + maxp + 2 states. (o, p are finite!)
~~ For a set of k vertices, (max o + max p + 2)¥ combinations must be to considered

Assume (o, p) is m-structured (e.g., m = 2):
m The selection status of specific vertices determines the number of neighbors for other vertices

(think of it as some parity-like argument).
m Selection state and number of neighbors are “orthogonal” properties

~» Many combinations are ruled out

Key Lemma (Upper Bounds)
For m-structured (o, p), the number of partial solutions for a separator of size k is
m ~ (max(o U p) +2) for m = 2 and maxo = maxp even,

m ~ (max(o U p) + 1) otherwise.
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For cofinite o or p:
m Use technique of representative sets to store fewer states
m Number of partial solutions stored ~ number of missing degrees ~~ better algorithm

Definition: cost(T) := max(7) if T is finite and cost(T) := [N\ 7| if T is cofinite.

Theorem

(0, p)-DOMINATING SET can be solved in time (max{cost(c), cost(p)} + 1)(wH2)tw . nO(1)
for (co)finite o, p, given a tree decomposition of width tw with w as matrix multiplication exponent.
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Decision Version
m Algorithm from counting version transfers naturally,
but more cases can be solved trivially (e.g., if 0 € p)
m Lower bounds can be adjusted for finite o and p
For cofinite o or p:
m Use technique of representative sets to store fewer states
m Number of partial solutions stored ~ number of missing degrees ~~ better algorithm
Definition: cost(T) := max(7) if T is finite and cost(T) := [N\ 7| if T is cofinite.
Theorem

(0, p)-DOMINATING SET can be solved in time (max{cost(c), cost(p)} + 1)«+2)tw . ,O(1)

for (co)finite o, p, given a tree decomposition of width tw with w as matrix multiplication exponent.

Example for o = {0}, p = N\ {1000}:
The previous 1002 algorithm is improved to get a 2(“+2™ < 21% 3]gorithm
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Summary

Definition
For finite or cofinite o, p C N, we set
— Co,p = Otop + Ptop + 2

if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2

if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Cop = max{atopv Ptop} +1 otherwise.
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For finite or cofinite o, p C N, we set
= Co,p = Otop + Ptop + 2 if (o, p) is not m-structured,
— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and
— Cop = max{atopv ptop} +1 otherwise.

m Optimal (cy,)™ - poly(|G]) algo for counting version, unless #SETH fails.
m Optimal (c,,)™ - poly(|G|) algo for decision version with finite o and p, unless SETH fails.

m Faster algorithm for decision version if (at least) one of o and p is cofinite.

Full paper: arxiv.org/abs/2211.04278
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Summary (formalized) | i

Definition

For finite or cofinite o, p C N, we set

= Co,p = Otop T Ptop + 2 if (o, p) is not m-structured,

— Co.p = Max{0iop, Ptop} + 2 if Otop = Prop is even and (o, p) is 2-structured
(but not m > 3-structured), and

— Co.p = Max{0iop, Prop} + 1 otherwise.

Theorem (Upper Bounds)

#(0, p)-DOMINATING SET can be solved in time (cy,,)™() - poly(|G|)

if o, p are finite or cofinite and a tree decomposition of width tw(G) is given.

Theorem (Lower Bounds)

Unless #SETH fails, #(c, p)-DOMINATING SET has no (c,,, — €)™(©) - poly(|G|) algo

for non-trivial, finite or cofinite o, p, even if a tree decomposition of width tw(G) is given.
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Lower Bound

Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints
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Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints
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Use general idea from [CM16]:

1 Reduce #SAT to #(o, p)-DOMINATING SET
with constraints
m Constraints restrict the selection of vertices
to predefined combinations
m This provides the power to check
if “clauses are satisfied”
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2 Implement the constraints

m Solutions that are easy to find,
have to be counted, too.

m Use counting complexity techniques
and carefully designed gadgets
to overcome these issues
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m For a separator X and a partial solution S, we define
o vector 7 (S) € {0, 1}X! and weight vector w(S) € {0, 1}IX!

Consider two partial solutions S, T for X:

3S)o o 0 0 1 #T) o1 0 1 0
w(S)o 0 1 0 0 w(T) 1. 0 1 0 0
(X o o s o @] |[x —79—©J
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Decomposing Types Helps
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)
m For a separator X and a partial solution S, we define
o vector o (S) € {0,1}X and weight vector W (S) e {0, 1}X!
Consider two partial solutions S, T for X:
m Observe: @ (S)- W(T) =y, @(T) - W(S) ~ o-vectors are “orthogonal” to weight-vectors
m Not too many solutions satisfy this “orthogonality” at the same time
S)o 0 0 0 1 FT) 0o 1 0
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Decomposing Types Helps bk e
Consider PERFeCT CoDE (o = {0}, p = {1}, m-structured for all m > 2)

m For a separator X and a partial solution S, we define
o vector 7 (S) € {0, 1}X! and weight vector w(S) € {0, 1}IX!
Consider two partial solutions S, T for X:
m Observe: @ (S)- W(T) =y, @(T) - W(S) ~ o-vectors are “orthogonal” to weight-vectors

m Not too many solutions satisfy this “orthogonality” at the same time

Key Lemma (Upper Bounds)

For m-structured (o, p), the number of partial solutions is
m O((max{otop, Prop} + 2)™) for m = 2 and oop = prop €ven,

m O((max{otop, Prop} + 1)™) otherwise.
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Removing the Relations in the Counting

Version (simplified)
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