Faster, Higher, Easier:
Toward a Systematic Study of
Parameterized Vertex and
Edge Selection Problems

Philipp Schepper ’_O_O_(

September 29, 2025

Fire Protection Train (FPT) Problem

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to S o
position the fire trains /\._\./
at. .\./A./ (
| s
RS L
\ G '\ =
N A
i/ \/\
7~
!"\{/o/

Fire Protection Train (FPT) Problem

Task: Moving Train
Find (few) locations to
position the fire trains
at.

Fire Protection Train (FPT) Problem

Task: Moving Train
Find (few) locations to
position the fire trains
at.

Fire Protection Train (FPT) Problem

Task: Moving Train Stationary Position
Find (few) locations to

position the fire trains ./.\.‘.\./. ./.>?._\./.D
A \%E\ AN |

LT L &S A
A S
pLLVANR SR VAN
I L/

Fire Protection Train (FPT) Problem

Task: Moving Train Stationary Position
Find (few) locations to
position the fire trains
at.

Fire Protection Train (FPT) Problem

Task: Moving Train Stationary Position
Find (few) locations to
position the fire trains
at.

Fire Protection Train (FPT) Problem

Task: Moving Train Stationary Position
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve

the problem!

Fire Protection Train (FPT) Problem: Formalization

Fire Protection Train (FPT) Problem: Formalization

Edge Cover
Each vertex incident to
> 1 selected edge.

Fire Protection Train (FPT) Problem: Formalization

Edge Cover
Each vertex incident to
> 1 selected edge.

Total 2-Domination
Selected vertex:

> 1 selected neighbor.
Unselected vertex:

> 2 selected neighbor.

More Edge and Vertex Selection Problems

‘ Selected Unselected

Edge Cover ‘ >1

. N\
!/i\ y \

N\, —

4

More Edge and Vertex Selection Problems

Selected Unselected

Edge Cover >1
Matching <1
Perfect Matching =1

More Edge and Vertex Selection Problems

o
Selected Unselected r'\ /.
Edge Cover > 1 - \
Matching <1 ’ o 4 \
Perfect Majtching =1 /. .A./. F
Cycle Packing —0or=2 o \

More Edge and Vertex Selection Problems

Selected Unselected

@ .
Edge Cover >1 .
Matching <1 QK}

Perfect Matching =1
Cycle Packing =0or=2

Total 2-Domination > 1 > 2 Q-. * ‘/?.
A

VAN

é o.,—0

More Edge and Vertex Selection Problems

Selected Unselected

Edge Cover
Matching

Perfect Matching
Cycle Packing
Total 2-Domination
Dominating Set

>1

<1

=1
=0or=2
>1 >2
>0 >1

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover >1
Matching <1 74\

Perfect Matching =1
Cycle Packing =0or=2

Total 2-Domination >1 >2 '
Dominating Set >0 >1 \d
Independent Set =0 >0

More Edge and Vertex Selection Problems

Selected Unselected

Edge Cover >1
Matching <1
Perfect Matching =1

[]
[R E
(J
()
Cycle Packing =0or=2 .
Total 2-Domination >1 >2 °
()
>0 >1 o /+
i [}
[J
é’.

Dominating Set
Independent Set =0 >0
Perfect Code =0 =1

N\ T

More Edge and Vertex Selection Problems

Selected Unselected .\G\ ‘
Edge Cover >1 o r°
Matching <1 \GL.
Perfect Matching = EnCo ey <
Cycle Packing =0or=2 CO”Straints SOree
Total 2-Domination >1 >z as Sets! ~
Dominating Set >0 >1 ‘. /+ .
Independent Set =0 >0 xd /‘.
Perfect Code =0 =1 o

Selecting Edges » Generalized Factor
Fix aset A CN.

A-Factor [Lovasz 1972]
Given: A simple graph G.

Is there an edge set S C E(G) such that
for every vertex v € V(G) we have degg(v) € A?

Selecting Edges » Generalized Factor
Fix aset A CN.

A-Factor [Lovasz 1972]
Given: A simple graph G.

Is there an edge set S C E(G) such that
for every vertex v € V(G) we have degg(v) € A?

. /
!/\7\

\,. R
‘\!°~
o\/

i</

{1,2,3,... }-Factor

Selecting Edges » Generalized Factor

Fix aset A CN.

N-Factor

Given: A simple graph G.

[Lovasz 1972]

Is there an edge set S C E(G) such that
for every vertex v € V(G) we have degg(v) € A?

Degree A
Edge Cover >1 {1,2,3,...}
Matching <1 {0,1}
Perfect Matching =1 {1}
Cycle Packing =0or=2 {0, 2}

/
.7‘

/

Shme

.\/

° '\.

{1,2,3, ..

/

. }-Factor

Selecting Edges » Generalized Factor

Fix aset A CN.
N-Factor [Lovasz 1972]
Given: A simple graph G.

Is there an edge set S C E(G) such that
for every vertex v € V(G) we have degg(v) € A?

Degree A
Edge Cover >1 {1,2,3,...}
Matching <1 {0,1}
Perfect Matching =1 {1} {0,2,4,6,...)-Factor
Cycle Packing =0or=2 {0, 2}

Selecting Vertices » Generalized Domination
Fix two sets o, p C N.

(o, p)-DomSet [Telle 1994]
Given: A simple graph G.
Is there a vertex set S C V(G) such that

—foreach v e V(G) N S, we have [N(v)N S| € o, and
—foreach v € V(G)\ S, we have |[N(v) N S| € p?

Selecting Vertices » Generalized Domination

Fix two sets o, p C N.

(. p)-DomSet [Telle 1994] _
Given: A simple graph G. o /7
Is there a vertex set S C V(G) such that ! ; E. o—

—foreach v e V(G) N S, we have [N(v)N S| € o, and - .. J
—foreach v e V(G)\ S, we have |[N(v)N S| € p? P *

Selecting Vertices » Generalized Domination

Fix two sets o, p C N.

(. p)-DomSet [Telle 1994] _
Given: A simple graph G. o /7
Is there a vertex set S C V(G) such that ! ; E. o—

—foreach v e V(G) N S, we have [N(v)N S| € o, and - ., y \
—foreach v € V(G)\ S, we have |[N(v) N S| € p? P *
Sel. Uns. o 0 -/4? /s
Total 2-Dom. >1 >2 [{1,2,...} {2,3,...} £’° */
IndependentSet | =0 >0 {0} N *
DominatingSet | >0 >1 N {1,2,...} ({0}, {1})-DomSet
Perfect Code = =1 {0} {1}

Solving the Problems

Few cases are trivial:
m 0 Aor0 € p- select nothing

m A =0 = N - select everything

AN
)
P ! i //'\
SSA =
A\l /)
\./.\,_—\

Solving the Problems

Few cases are trivial: T\
|)
m0cAor0 ¢ p- select nothing I\\‘\/_ |
pad /\
. S
m A =0 = N - select everything \./\i\/\
\ N]
R NLVAN
<"/

Our approach to the general cases:

m Restrict input graphs

Solving the Problems

Few cases are trivial: T\
. NSy
m 0cAor0 e p- select nothing I\\‘\/_ |
. K= A
m A =0 = N - select everything \/\i\/\
'\ . e—t
R aNLVAN
<"/

Our approach to the general cases:

m ResTCCimpstgraphs

m Study parameterization by treewidth

Solving the Problems

Few cases are trivial: T\
.)
m 0cAor0 e p- select nothing I\\‘\/_ |
. T A
m A =0 = N - select everything \.>i\/'\
\ N]
R NLVAN
<"/

Our approach to the general cases:

m ResTCCimpstgraphs

m Study parameterization by treewidth

m Consider finite and cofinite sets (i.e., the set or its complement is finite)

~ covers most classical problems already

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees

i
I
./.\.
NN
./ \. \. \

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

i
I
./.\.
NN
./ \. \. \

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

Treewidth ...

B measures how “tree-like"” a graph is.

i
I
./.\.
NN
./ \. \. \

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees

~ Extend to general graphs ./‘\
P | >
. '\./
Treewidth ... R YN e
N
B measures how “tree-like” a graph is. \o—ul JIN <o’
@m0 :
I . g

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

Treewidth ...

B measures how “tree-like"” a graph is.

Large treewidth!

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

Treewidth ...

B measures how “tree-like"” a graph is.

7

N

SN

X

N\

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

Treewidth ...
B measures how “tree-like"” a graph is.

m has a definition that is hard to digest.

7

N

SN

X

N\

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

Treewidth ...
B measures how “tree-like"” a graph is.
m has a definition that is hard to digest.

m is determined by special separators, referred to
as “bags”.

SN

X

N\

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
~ Extend to general graphs

Treewidth ...
B measures how “tree-like"” a graph is.
m has a definition that is hard to digest.
m is determined by special separators, referred to
as “bags”.
m depends on some tree structure that allows for
DPs (“tree decomposition”).

SN

X

N\

Solving the Problems: Known Results

Generalized Factor: Generalized Domination:
m Set A has no large “gap™ m No unified condition for
polynomial-time polynomial-time cases

[Cornuéjols 1988] (only individual results)

Solving the Problems: Known Results

Generalized Factor: Generalized Domination:

m Set A has no large “gap™ m No unified condition for
polynomial-time polynomial-time cases
[Cornuéjols 1988] (only individual results)

m Setisinterval + 0: m Finite or cofinite sets:
algorithm parameterized algorithm parameterized

by treewidth [ACCMM 2018] by treewidth [VRBR 2009]

Solving the Problems: Known Results

Generalized Factor: Generalized Domination:

m Set A has no large “gap™ m No unified condition for
polynomial-time polynomial-time cases
[Cornuéjols 1988] (only individual results)

m Setisinterval + 0: m Finite or cofinite sets:
algorithm parameterized algorithm parameterized
by treewidth [ACCMM 2018] by treewidth [VRBR 2009]

What about more general sets?
Are the known algorithms optimal?

What about counting the number of solutions?

Outline

Generalized Factor

Generalized Domination

10

Outline

[Representative Sets

[Convolution Techniques j

Y Y

Generalized Factor

Y Y

Generalized Domination

10

Outline

[Representative Sets

[Convolution Techniques j

Y Y

Generalized Factor

A

Y Y

Generalized Domination

A

[Variant of the Strong Exponential-Time Hypothesis (SETH) j

10

Outline

[Representative Sets

[Convolution Techniques j

\

y

Y

y

Generalized Factor

A

z

Y

Generalized Domination

A

[Variant of the Strong Exponential-Time Hypothesis (SETH) j

10

Outline

[Representative Sets

[Convolution Techniques j

\

y

Y

y

Generalized Factor

Y

Generalized Domination

A

[Variant of the Strong Exponential-Time Hypothesis (SETH) j

10

Solving (o, p)-DomSet: Idea

Case Study: Perfect Code =

(0, p)-DomSet with ¢ = {0} and p = {1}

11

Solving (o, p)-DomSet: Idea

Case Study Perfect Code =

\>\\//D

(0, p)-DomSet with ¢ = {0} and p = {1}

11

Solving (o, p)-DomSet: Idea
Case Study: Perfect Code =

_ 4

(0, p)-DomSet with ¢ = {0} and p = {1}

11

Solving (o, p)-DomSet: Idea
Case Study: Perfect Code =
50; /(l? S

_ 4

(0, p)-DomSet with ¢ = {0} and p = {1}

11

Solving (o, p)-DomSet: Idea

Case Study: Perfect Code =

(0, p)-DomSet with ¢ = {0} and p = {1}

Each vertex in g can be

11

Solving (o, p)-DomSet: Idea

Case Study: Perfect Code =

(0, p)-DomSet with ¢ = {0} and p = {1}

Each vertex in g can be

selected with 0 selected neighbors,

1
Sy
L J

11

Solving (o, p)-DomSet: Idea
Case Study: Perfect Code = (o, p)-DomSet with o = {0} and p = {1}

Each vertex in g can be
selected with 0 selected neighbors,

; unselected with 0 selected neighbors, or

11

Solving (o, p)-DomSet: Idea
Case Study: Perfect Code = (o, p)-DomSet with o = {0} and p = {1}

Each vertex in g can be
selected with 0 selected neighbors,
unselected with 0 selected neighbors, or

l l unselected with 1 selected neighbor.

11

Solving (o, p)-DomSet: Idea
Case Study: Perfect Code = (o, p)-DomSet with o = {0} and p = {1}

Each vertex in g can be
selected with 0 selected neighbors,
unselected with 0 selected neighbors, or

unselected with 1 selected neighbor.

[°
5 ;i * W Otherwise, solution is invalid!
Be /(l? ‘
()

11

Solving (o, p)-DomSet: Idea

Case Study: Perfect Code

= (o,p)-DomSet with ¢ = {0} and p = {1}

Each vertex in g can be

selected with 0 selected neighbors,
unselected with 0 selected neighbors, or
unselected with 1 selected neighbor.

B Otherwise, solution is invalid!

~s 3 states for each vertex

11

Solving (o, p)-DomSet: Idea

Case Study: Perfect Code

= (o,p)-DomSet with ¢ = {0} and p = {1}

Each vertex in g can be

selected with 0 selected neighbors,
unselected with 0 selected neighbors, or
unselected with 1 selected neighbor.

B Otherwise, solution is invalid!

~s 3 states for each vertex

~ 3lBl states for bag B

11

Solving (o, p)-DomSet: Algorithm

Recall: 3/8l states for each bag B.

12

Solving (o, p)-DomSet: Algorithm

Recall: 3/8l states for each bag B.

The algorithm:

DP over the given tree decomposition

12

Solving (o, p)-DomSet: Algorithm

Recall: 3/8l states for each bag B.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

12

Solving (o, p)-DomSet: Algorithm

Recall: 3/8l states for each bag B.

The algorithm:

DP over the given tree decomposition
+ Efficient convolution techniques to combine states at join nodes

= 3™(%) . poly(|G|) algorithm

12

Solving (o, p)-DomSet: Algorithm

Recall: 3/8l states for each bag B.

The algorithm:

DP over the given tree decomposition
+ Efficient convolution techniques to combine states at join nodes

= 3™(%) . poly(|G|) algorithm

Are 3%(%) states actually possible?
Can we do better?

12

Solving (o, p)-DomSet: Algorithm

Recall: 3/8l states for each bag B.

The algorithm:

DP over the given tree decomposition
+ Efficient convolution techniques to combine states at join nodes

= 3™(%) . poly(|G|) algorithm

Are 3%(%) states actually possible? No!
Can we do better? Yes!

12

Solving (o, p)-DomSet: Structural Insights

13

Solving (o, p)-DomSet: Structural Insights

m Define {0, 1}-vector encoding selection status ~- selection-vector s

13

Solving (o, p)-DomSet: Structural Insights

m Define {0, 1}-vector encoding selection status ~- selection-vector s

m Define vector with number of selected neighbors ~» weight-vector w

13

Solving (o, p)-DomSet: Structural Insights

m Define {0, 1}-vector encoding selection status ~- selection-vector s
m Define vector with number of selected neighbors ~» weight-vector w
m Consider two solutions:

X y
s(x) 0 0 0 0 1
w(x) 0 0 1 0 0
B e ° ° ° ﬁ B e ° ° ° °
o .
° °

13

Solving (o, p)-DomSet: Structural Insights

m Define {0, 1}-vector encoding selection status ~- selection-vector s
m Define vector with number of selected neighbors ~» weight-vector w
m Consider two solutions:

x

y
s(x) 0 0 0 0 1 sfy) O 1 0 1 0

wix) 0 0 1 0 0 wly) 1 0 1 0 0
B e ° ° ° ﬁ B e
.

H

13

Solving (o, p)-DomSet: Structural Insights

m Define {0, 1}-vector encoding selection status ~- selection-vector s
m Define vector with number of selected neighbors ~» weight-vector w
m Consider two solutions:

X y

s(x) 0 0 0 0 1 sfy) O 1 0 1 0

wix) 0 0 1 0 o0 wly) 1 0 1 0 o0
B e ° ° ° f B e ° ° ° °

m Vectors are orthogonal: s(x) - w(y) = s(y) - w(x) =0

~ Not too many vectors/solutions can satisfy this property

13

Solving (o, p)-DomSet: A Faster Algorithm

Key Result

Only 2t(6) of the 3™(6) states might have solutions!

14

Solving (o, p)-DomSet: A Faster Algorithm

Key Result

Only 2t(6) of the 3™(6) states might have solutions!

Problem: Convolution still considers all 3*¥(¢) possible states.

14

Solving (o, p)-DomSet: A Faster Algorithm
Key Result

Only 2t(6) of the 3™(6) states might have solutions!

Problem: Convolution still considers all 3t%(¢) possible states.

Adjusted algorithm:
Use orthogonality to compress vectors

14

Solving (o, p)-DomSet: A Faster Algorithm

Key Result

Only 2t(6) of the 3™(6) states might have solutions!

Problem: Convolution still considers all 3t%(¢) possible states.

Adjusted algorithm:
Use orthogonality to compress vectors

Use convolution techniques to obtain a faster DP

14

Solving (o, p)-DomSet: A Faster Algorithm

Key Result

Only 2t(6) of the 3™(6) states might have solutions!

Problem: Convolution still considers all 3t%(¢) possible states.

Adjusted algorithm:
Use orthogonality to compress vectors

Use convolution techniques to obtain a faster DP

Use orthogonality to decompress vectors again

14

Solving (o, p)-DomSet: A Faster Algorithm
Key Result
Only 2t(6) of the 3™(6) states might have solutions!

Problem: Convolution still considers all 3t%(¢) possible states.

Adjusted algorithm:
Use orthogonality to compress vectors

Use convolution techniques to obtain a faster DP

Use orthogonality to decompress vectors again

~ Algorithm with runtime 2%(¢) . poly(|G|) before: 3*(%) . poly(|G|)

14

Solving (o, p)-DomSet: A Faster Algorithm

Key Result

Only 2t(6) of the 3™(6) states might have solutions!
Problem: Convolution still considers all 3t%(¢) possible states.

Adjusted algorithm:
Use orthogonality to compress vectors

Use convolution techniques to obtain a faster DP

Use orthogonality to decompress vectors again

~ Algorithm with runtime 2%(¢) . poly(|G|) before: 3*(%) . poly(|G|)

We extend this to other sets as well!

14

Solving (o, p)-DomSet: Our Contribution

For finite or cofinite o, p C N, we define a constant ¢, , such that

15

Solving (o, p)-DomSet: Our Contribution

For finite or cofinite o, p C N, we define a constant ¢, , such that
Theorem

We solve (o, p)-DomSet in time (¢5,)™ - poly(|G|)

if a tree decomposition of width tw is given.

15

Solving (o, p)-DomSet: Our Contribution

For finite or cofinite o, p C N, we define a constant ¢, , such that
Theorem
We solve (o, p)-DomSet in time (¢5,)™ - poly(|G|)

if a tree decomposition of width tw is given.

Algorithm works for

m (exact) decision version,

B Minimization and maximization version, and
m counting version.

15

Solving (o, p)-DomSet: Our Contribution

For finite or cofinite o, p C N, we define a constant ¢, , such that
Theorem
We solve (o, p)-DomSet in time (¢5,)™ - poly(|G|)
if a tree decomposition of width tw is given.
Algorithm works for
m (exact) decision version,
B Minimization and maximization version, and

m counting version.

Next goal: Check if constant ¢, , is optimal.

15

Outline

[Representative Sets

[Convolution Techniques j

Y Y

Generalized Factor

A

Y Y

Generalized Domination

A

[Variant of the Strong Exponential-Time Hypothesis (SETH) j

16

Outline

[Representative Sets

[Convolution Techniques j

Y Y

Generalized Factor

Y Y

Generalized Domination

A

[Variant of the Strong Exponential-Time Hypothesis (SETH) j

16

N-Factor: Upper Bound

For simplicity, consider finite sets for now.
Each vertex can have maxA + 1 intermediate states.

A-Factor: Upper Bound

For simplicity, consider finite sets for now.

Each vertex can have maxA + 1 intermediate states.
Theorem

For every finite set A C N:
We solve A-Factor in time (maxA + 1)™ - poly(|G|)
if a tree decomposition of width tw is given.

A-Factor: Upper Bound

For simplicity, consider finite sets for now.

Each vertex can have maxA + 1 intermediate states.
Theorem

For every finite set A C N:

We solve A-Factor in time (maxA + 1)™ - poly(|G|)
if a tree decomposition of width tw is given.

Prove:
No algorithm with running time
(maxA+1— &)™ - poly(]G]) exists.

NA-Factor: Idea for the Lower Bound

m Unconditionally extremely difficult

19

NA-Factor: Idea for the Lower Bound

m Unconditionally extremely difficult
m Use difficulty of well-studied problems

~» Suitable reduction gives good lower
bound

SAT

Y

NA-Factor

19

NA-Factor: Idea for the Lower Bound

m Unconditionally extremely difficult
m Use difficulty of well-studied problems

~» Suitable reduction gives good lower
bound

m Use better suited, more flexible CSP-B
problem (variables can take B values)
[Lampis 2020 & 2025]

SAT

CSP-B

Y

NA-Factor

19

NA-Factor: Idea for the Lower Bound

m Unconditionally extremely difficult
m Use difficulty of well-studied problems

~» Suitable reduction gives good lower
bound

m Use better suited, more flexible CSP-B
problem (variables can take B values)
[Lampis 2020 & 2025]

~ Simplified reductions that are easier to
understand

SAT =
A 4
w
CSP-B
ﬁ
A 4
A-Factor —

19

A-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (maxA + 1 — &)™ - poly(|G|) exists.

20

A-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (maxA + 1 — &)™ - poly(|G|) exists.

CSP-(maxA + 1)

A-Factor

20

A-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (maxA + 1 — &)™ - poly(|G|) exists.

CSP-(maxA + 1)

!

)

NA-Factor with Relations

A-Factor

Encode the variable assignment
by edge selections

20

A-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (maxA + 1 — &)™ - poly(|G|) exists.

f-

CSP-(maxA + 1)

-\

NA-Factor with Relations

A-Factor with HW—; and EQ

A-Factor

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

20

A-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (maxA + 1 — &)™ - poly(|G|) exists.

f-

CSP-(maxA + 1)

-\

]

NA-Factor with Relations

)

|
A-Factor with HW_; and EQ

A-Factor

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

Exploit properties of A
to realize the remaining relations

20

N-Factor: Our Contribution

Fix a finite or cofinite set A C N.
Define top A := maxA if Aisfinite and topA :=max(Z\ A) + 1 if A is cofinite.

Example: top{l,4} =4 and top{l,4,5,6,...} =4

21

N-Factor: Our Contribution

Fix a finite or cofinite set A C N.
Define top A := maxA if Aisfinite and topA :=max(Z\ A) + 1 if A is cofinite.

Theorem (Upper Bound)
We solve A-Factor in time (top A + 1)™ - poly(|G|)
if a tree decomposition of width tw is given.

21

N-Factor: Our Contribution

Fix a finite or cofinite set A C N.
Define top A := maxA if Aisfinite and topA :=max(Z\ A) + 1 if A is cofinite.

Theorem (Upper Bound)
We solve the counting version of A-Factor in time (top A + 1)™ - poly(|G|)
if a tree decomposition of width tw is given.

21

N-Factor: Our Contribution

Fix a finite or cofinite set A C N.
Define top A := maxA if Aisfinite and topA :=max(Z\ A) + 1 if A is cofinite.
Theorem (Upper Bound)

We solve the counting version of A-Factor in time (top A + 1)™ - poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, A-#Factor has no (topA + 1 — &)™ - poly(|G|) algorithm

for non-poly-time sets even if a tree decomposition of width tw is given.

21

N-Factor: Our Contribution

Fix a finite or cofinite set A C N.
Define top A := maxA if Aisfinite and topA :=max(Z\ A) + 1 if A is cofinite.
Theorem (Upper Bound)

We solve the counting version of A-Factor in time (top A + 1)™ - poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, A-#Factor has no (topA + 1 — &)™ - poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.
Decision version:

m Finite set: Similar lower bound

m Cofinite set: Improved algorithm but no matching lower bound

21

(o, p)-DomSet: Our Contribution

Fix two finite or cofinite sets o, p C N.

Theorem (Upper Bound)
We solve the counting version of (o, p)-DomSet in time (¢s,,)™ - poly(|G|)
if a tree decomposition of width tw is given.

22

(o, p)-DomSet: Our Contribution

Fix two finite or cofinite sets o, p C N.

Theorem (Upper Bound)

We solve the counting version of (o, p)-DomSet in time (¢s,,)™ - poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, (o, p)-#DomSet has no (¢, — €)™ - poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

22

(o, p)-DomSet: Our Contribution

Fix two finite or cofinite sets o, p C N.

Theorem (Upper Bound)

We solve the counting version of (o, p)-DomSet in time (¢s,,)™ - poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, (o, p)-#DomSet has no (¢, , — €)™ - poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
m Finite sets: Similar lower bound

m Cofinite sets: Improved algorithm but no lower bound

22

Summary

Problem Deciding
A finite tight
A-Factor - _
. improved algorithm,
A cofinite

gap remains

23

Summary

Problem Deciding
A finite tight
A-Factor - -
. improved algorithm,
A cofinite

gap remains

(0, p)-DomSet

o and p finite

tight

o or p cofinite

improved algorithm,
no lower bound

23

Summary

Problem Deciding Counting

A finite tight
A-Factor - - tight

. improved algorithm,
A cofinite _
gap remains

o and pfinite || tight

(0, p)-DomSet tight

o or p cofinite

improved algorithm,
no lower bound

23

Summary

Problem Deciding Counting

A finite tight
A-Factor - - tight

. improved algorithm,
A cofinite _
gap remains

o and pfinite || tight

(0, p)-DomSet tight

o or p cofinite

improved algorithm,
no lower bound

Open questions: Close gaps? More general sets? Other parameters?

23

Fire Protection Train (FPT) Problem

Task: Moving Train
Find (few) locations to
position the fire trains
at.

Stationary Position

24

Fire Protection Train (FPT) Problem

Task: Moving Train Stationary Position
Find (few) locations to
position the fire train
at.

24

Appendix

Outline

[Representative Sets

[Convolution Techniques j

Y Y

Generalized Factor

A

Y Y

Generalized Domination

A

[Variant of the Strong Exponential-Time Hypothesis (SETH) j

Al

(o, p)-DomSet: Structured Pairs

m-structured (o, p)
Form > 2, (o, p) is m-structured if there are o and g such that
foralls e o wehaves=amodm and forallre pwehaver=p modm.

A2

(o, p)-DomSet: Structured Pairs

m-structured (o, p)
Form > 2, (o, p) is m-structured if there are o and g such that
forallse owehaves=amodm and forallrepwehaver=8 modm.

Examples:

o 0 m-structured for
{1,3} {4} m=2
{0,4} {1,9} m=2,4

{0} {1} every m > 2
{0,3} {1,5} nom>?2
{d} N nom>?2

A2

(o, p)-DomSet: Structured Pairs

m-structured (o, p)
Form > 2, (o, p) is m-structured if there are o and g such that

forallse owehaves=amodm and forallrepwehaver=8 modm.

Examples:
o 0 m-structured for
{13y 4 m =2 If (0, p) is m-structured for some m > 2,
0.4} {19} m=24 we show an improved algorithm.
{0} {1} every m > 2
{0,3} {1,5} nom>?2
{d} N nom > 2

A2

(o, p)-DomSet: Our Contribution (Formalized)
Definition for finite or cofinite o, p C N
W, =topo+topp+2 if (o, p) is not m-structured,

B ¢, = max(topo,topp) + 2 if topo = top p is even
and (o, p) is 2-structured but not m > 3-structured, and

W ¢, , = max(topo, topp)+ 1 otherwise.

A3

(o, p)-DomSet: Our Contribution (Formalized)
Definition for finite or cofinite o, p C N
W, =topo+topp+2 if (o, p) is not m-structured,

B ¢, = max(topo,topp) + 2 if topo = top p is even
and (o, p) is 2-structured but not m > 3-structured, and

W ¢, , = max(topo, topp)+ 1 otherwise.

Theorem (Upper Bound)
We can solve (g, p)-#DomSet in time (¢s,,)™ - poly(|G|)

if a tree decomposition of width tw is given.

A3

(o, p)-DomSet: Our Contribution (Formalized)
Definition for finite or cofinite o, p C N
W, =topo+topp+2 if (o, p) is not m-structured,

B ¢, = max(topo,topp) + 2 if topo = top p is even
and (o, p) is 2-structured but not m > 3-structured, and

W ¢, , = max(topo, topp)+ 1 otherwise.
Theorem (Upper Bound)
We can solve (g, p)-#DomSet in time (¢s,,)™ - poly(|G|)
Theorem (Lower Bound)

Unless #SETH fails, (o, p)-#DomSet has no (¢, — €)™ - poly(|G|) algorithm

A3

Representative Sets: Idea

A-Factor with A = N\ {0, 1024}

Ad

Representative Sets: Idea

A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Ad

Representative Sets: Idea
A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.
Can we improve this? Are all partial solutions relevant?

m Fix a vertex v.

Ad

Representative Sets: Idea
A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.
Can we improve this? Are all partial solutions relevant?

m Fix a vertex v.

m Fix three solutions with degree 0, 256, and 1024 for v, respectively.

Ad

Representative Sets: Idea
A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.
Can we improve this? Are all partial solutions relevant?

m Fix a vertex v.
m Fix three solutions with degree 0, 256, and 1024 for v, respectively.

m A future extension increases the degree of v by f.

Ad

Representative Sets: Idea
A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.
Can we improve this? Are all partial solutions relevant?

m Fix a vertex v.

m Fix three solutions with degree 0, 256, and 1024 for v, respectively.

m A future extension increases the degree of v by f.

m One of these three solutions can be combined with f as
{0+ f,256 + f,1024 + f} # {0,1024} = N\ A.

Ad

Representative Sets: Idea

A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

m Fix a vertex v.
m Fix three solutions with degree 0, 256, and 1024 for v, respectively.
m A future extension increases the degree of v by f.

m One of these three solutions can be combined with f as
{0+ f,256 + f,1024 + f} # {0,1024} = N\ A.

~ N\ A+ 1= [{0,1024}| = 3 solutions suffice instead of 1026!

Ad

Representative Sets: Idea

A-Factor with A = N\ {0,1024}: 1026™(%) . poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

m Fix a vertex v.
m Fix three solutions with degree 0, 256, and 1024 for v, respectively.
m A future extension increases the degree of v by f.

m One of these three solutions can be combined with f as
{0+ f,256 + f,1024 + f} # {0,1024} = N\ A.

~ N\ A+ 1= [{0,1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

Ad

Representative Sets

m Store only a representative set of the possible partial solutions!
~ (IN'\ Al + 1)™ solutions suffice instead of (max(N \ A) + 2)™.

A5

Representative Sets

m Store only a representative set of the possible partial solutions!
~ (IN'\ Al + 1)™ solutions suffice instead of (max(N \ A) + 2)™.

m Combine this with classical DP.

A5

Representative Sets

m Store only a representative set of the possible partial solutions!
~ (IN'\ Al + 1)™ solutions suffice instead of (max(N \ A) + 2)™.

m Combine this with classical DP.

Theorem
Fix a finite set X C N. We can solve (N \ X)-Factor in time
(1X] + 1)*™ . poly(|G|) if a tree decomposition of width tw is given.

A5

Representative Sets

m Store only a representative set of the possible partial solutions!
~ (IN'\ Al + 1)™ solutions suffice instead of (max(N \ A) + 2)™.

m Combine this with classical DP.

Theorem
Fix a finite set X C N. We can solve (N \ X)-Factor in time
(1X] + 1)*™ . poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026™ to 34" = g1,

A5

Representative Sets

m Store only a representative set of the possible partial solutions!
~ (IN'\ Al + 1)™ solutions suffice instead of (max(N \ A) + 2)™.

m Combine this with classical DP.

Theorem
Fix a finite set X C N. We can solve (N \ X)-Factor in time
(1X] + 1)*™ . poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026™ to 34" = g1,

We show a similar result for (o, p)-DomSet.

Note: Incompatible with counting version (“every solution matters”)!

A5

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L UR, E) has a half-induced matching of size £
if there are aq, ..., a€Landby,..., by € R such that

m (a;, bj) € E forall i, and

W (a;, bj) ¢ Eforalli<j.

A6

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L UR, E) has a half-induced matching of size £
if there are aq, ..., a€Landby,..., by € R such that

m (a;, bj) € E forall i, and

W (a;, bj) ¢ Eforalli<j.

A6

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L UR, E) has a half-induced matching of size £
if there are aq, ..., a€Landby,..., by € R such that

m (a;, bj) € E forall i, and

W (a;, bj) ¢ Eforalli<j.

31.20 32.23 33.=1
L1
bi=1 bp=2 b3=0

A6

Half-Induced Matchings

Definition (Half-Induced Matching)

Graph G = (LU R, E) has a half-induced matching of size ¢

iftherearea;,...,ap € Land by, ..., by € Rsuch that
m (a;, bj) € E forall i, and

W (a;, bj) ¢ Eforalli<j.

31./9 32.~3 33. 1
<]
/~~I..:§
() (] ‘®

bi=1 by=2 b3=0

Half-induced matching of size 3

A6

Half-Induced Matchings: Application

Consider A-Factor with A =N\ {0, 3,6}

Draw edge fromitojifi+je A

0 1 2 3 4
° ° ° ° °
° ° ° ° °

o1

(o))

~

A7

Half-Induced Matchings: Application

Consider A-Factor with A =N\ {0, 3,6}

Draw edge fromitojifi+je A

A7

Half-Induced Matchings: Application

Consider A-Factor with A =N\ {0, 3,6}

Draw edge fromitojifi+je A

0 1 2 3 4 5 6
o ° °) ° L e
[N NN A 'l RSP A
LI SR L RN EEAR A Ne
~ T YWY o _v
1 - A R 1 l'¢,'
A L4 *X14."
: , RQLLS
1)
1 LN 4”%|¢~“'~
LAV AR Be 4 L4 A K DS
1 ¢ Pu-L A TR S S 'S
Ps "3 v . ~
1 - 1 ~ ~
¢'4 1 ¢V , O . ~ ~ o
10 2 e . - S RS
[) [J [) (J [} (] [J
0 1 2 3 4 5 6

~

A7

Half-Induced Matchings: Application

Consider A-Factor with A =N\ {0, 3,6}

Draw edge fromitojifi+je A

A7

Half-Induced Matchings: Application
Consider A-Factor with A =N\ {0, 3,6}

Draw edge fromitojifi+je A

1
° [
J

A7

Half-Induced Matchings: Application

Consider A-Factor with A =N\ {0,3,6}
Draw edge fromitojifi+je A
0 3 6 1

i
24

A7

Half-Induced Matchings: Application

Consider A-Factor with A =N\ {0,3,6}
Draw edge fromitojifi+je A
0 3 6 1

i
Z4

7 6 3 0

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Convolution Techniques

Extend algorithm by van Rooij in multiple steps: [van Rooij 2020]

S Cyclic convolution:
Extend existing algorithm by computation of prime numbers
A Normal addition:
Use cyclic convolution and encode checksum by L to detect overflows
L Normal addition with large numbers:
Use cyclic convolution and encode checksum in binary to detect
overflows
T Truncated addition:
Use normal addition and zeta- and Mobius-transform

A8

Lower Bound: Known Hypotheses

Strong Exponential Time Hypothesis (SETH) [IP 2001, CIP 2009]
For all § > 0, there is a kK > 3 such that satisfiability of k-CNF formulas on n
variables cannot be solved in time (2 — §)".

Constraint Satisfaction Hypothesis (CSPH) [Lampis 2020]
Forall B >2and e > 0, there exists a g such that g-CSP-B with n variables
cannot be solved in time (B —¢)" - n®1).

Primal Pathwidth SETH (pw-SETH) [Lampis 2025]
For all € > 0, there is no algorithm which takes as input a 3-SAT instance ¢
and a path decomposition of its primal graph of width pw and correctly

decides if ¢ is satisfiable in time (2 — £)P" - |¢|°(1).

A9

Lower Bound: New Hypothesis

mono-pw-CSPH
For all B > 2 and ¢ > 0, there exists a g such that no algorithm can,
for a g-CSP-B instance ¢ that is given with

m a partition \; UV, of the variables,

B a nice path decomposition of the primal graph of ¢ of width w
m where every bag contains at most O(B - log|V1]) variables from V5,
B an injective mapping ¢ from the constraints of ¢ to the bags,

m the promise that every satisfying multi-assignment that is
consistent on V4 is also consistent on V4,
decide if there is a monotone satisfying multi-assignment that is
consistent on W in time (B —) - |$|°(1).

A10

Lower Bound: High-Level Construction

@) Gy C3 Cy

A11

Lower Bound: High-Level Construction

G

C2

G

vi

V2

v3

A11

Lower Bound: Realizing Relations

To realize arbitrary relations it suffices to

m force a single vertex/edge (of a group) to be selected ~ HW—; and

ensure that a group of vertices/edges is consistently selected (all or
none) ~ EQ.

A12

Summary (Formalized)

Problem Algorithm Lower Bound
(0, p)-#DomSet (cop)™ No (¢yp — €)PY
(cop)™ No (¢sp — £)P o and p finite
(o, p)-DomSet
(costy ,)O(tW) open ¢ or p cofinite
#ANtiFactor, ntw no nPW—¢

N-#Factor

N-Factor

(topA + 1)

no (topA +1 —¢g)P¥

no (topA+1—¢)P Afinite

A cofinite with half-

no (h—eg)™™ . . .
induced matching of size h

AntiFactor,

(X 4 1)(9(tw)

no (x+1—¢)™ x degrees forbidden

A13

More General Sets: From States to Automata

Finite set:

@-@-@-@

T ={0,3}

Periodic set (residue class):

& -@-®

r=1{0,3,6,9,...}

Next steps:

Cofinite set:

9
@~@~@~©

7={0,3,45,6,...}

Infinite set (ultimately periodic):

O+~ ®

={0,3,4,6,7,9,10,...}

Connection to faster algorithms? Efficient convolution techniques?

A14

	Appendix

