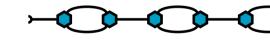
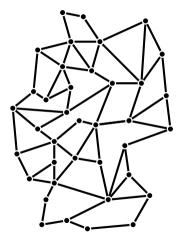
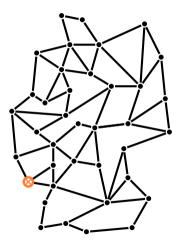
Faster, Higher, Easier: Toward a Systematic Study of Parameterized Vertex and Edge Selection Problems

Philipp Schepper

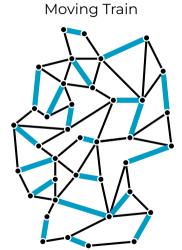




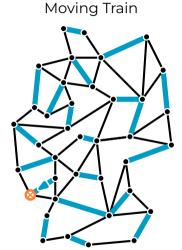
Task:



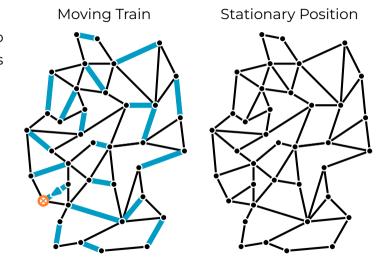
Task:



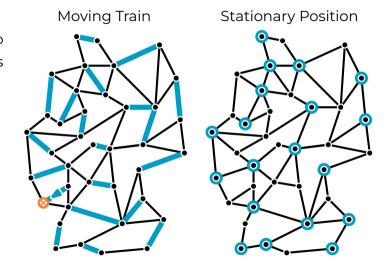
Task:



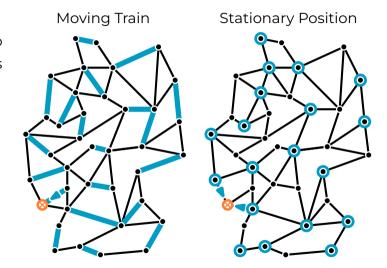
Task:



Task:



Task:

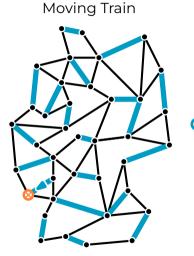


Task:

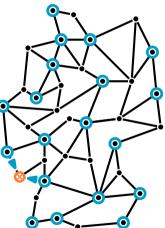
Find (few) locations to position the fire trains at.

Next:

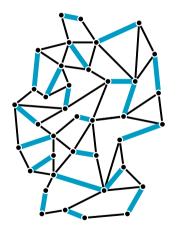
Formalize and solve the problem!

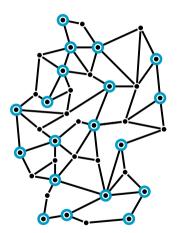


Stationary Position

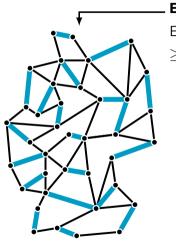


Fire Protection Train (FPT) Problem: Formalization



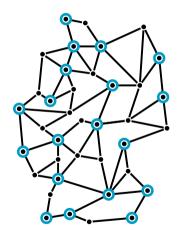


Fire Protection Train (FPT) Problem: Formalization

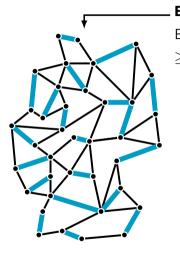


Edge Cover

Each vertex incident to ≥ 1 selected edge.



Fire Protection Train (FPT) Problem: Formalization



Edge Cover

Each vertex incident to

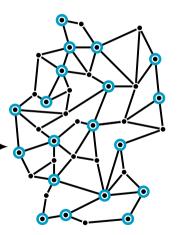
 \geq 1 selected edge.

Selected vertex:

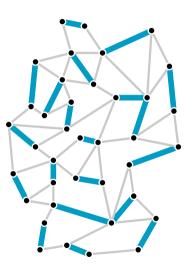
 ≥ 1 selected neighbor.

Unselected vertex:

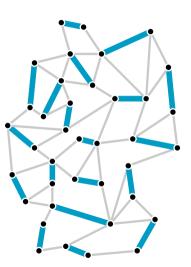
 \geq 2 selected neighbor.



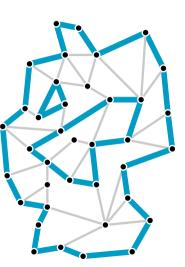
	Selected	Unselected
Edge Cover	≥ 1	



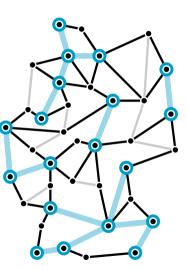
	Selected Unselected
Edge Cover	≥ 1
Matching	≤ 1
Perfect Matching	= 1



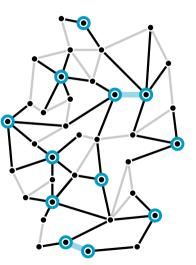
	Selected Unselected
Edge Cover	≥ 1
Matching	≤ 1
Perfect Matching	= 1
Cycle Packing	= 0 or = 2



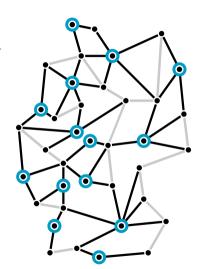
	Selected Unselected	
Edge Cover	≥ 1	
Matching	≤ 1	
Perfect Matching	= 1	
Cycle Packing	= 0 or = 2	
Total 2-Domination	≥ 1 ≥ 2	



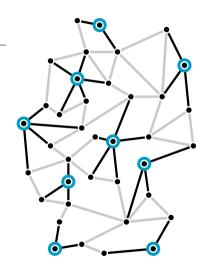
	Selected	Unselected
Edge Cover		≥ 1
Matching		≤ 1
Perfect Matching	= 1	
Cycle Packing	= 0 or = 2	
Total 2-Domination	≥ 1	≥ 2
Dominating Set	≥ 0	≥ 1



	Selected	Unselected
Edge Cover		≥ 1
Matching	≤ 1	
Perfect Matching	=1	
Cycle Packing	= 0 or = 2	
Total 2-Domination	≥ 1	≥ 2
Dominating Set	≥ 0	≥ 1
Independent Set	= 0	≥ 0



	Selected	Unselected
Edge Cover		<u>≥ 1</u>
Matching		≤ 1
Perfect Matching		= 1
Cycle Packing	= 0 or = 2	
Total 2-Domination	≥ 1	≥ 2
Dominating Set	≥ 0	≥ 1
Independent Set	= 0	≥ 0
Perfect Code	= 0	=1



	Selected	Unsele	ected
Edge Cover	2	≥ 1	
Matching	_	≤ 1	
Perfect Matching	=	= 1	Encode degree
Cycle Packing	= 0	or = 2	constraints
Total 2-Domination	≥ 1	\geq	constraints as sets!
Dominating Set	≥ 0	\geq	
Independent Set	= 0	\geq	0
Perfect Code	= 0	=	1
	'		

Fix a set $\Lambda \subseteq \mathbb{N}$.

Λ-Factor

[Lovász 1972]

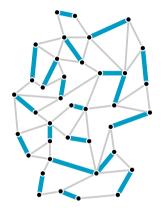
Given: A simple graph G.

Fix a set $\Lambda \subseteq \mathbb{N}$.

Λ-Factor

[Lovász 1972]

Given: A simple graph G.



{1, 2, 3, ...}-Factor

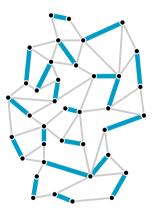
Fix a set $\Lambda \subseteq \mathbb{N}$.

Λ-Factor

[Lovász 1972]

Given: A simple graph G.

	Degree	Λ
Edge Cover	≥ 1	{1, 2, 3, }
Matching	≤ 1	{0, 1}
Perfect Matching	= 1	{1}
Cycle Packing	= 0 or = 2	{0, 2}



{1, 2, 3, ...}-Factor

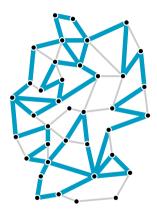
Fix a set $\Lambda \subseteq \mathbb{N}$.

Λ-Factor

[Lovász 1972]

Given: A simple graph G.

	Degree	٨
Edge Cover	≥ 1	{1, 2, 3, }
Matching	≤ 1	{0, 1}
Perfect Matching	= 1	{1}
Cycle Packing	= 0 or = 2	{0, 2}



 $\{0, 2, 4, 6, \dots\}$ -Factor

Selecting Vertices → Generalized Domination

Fix two sets σ , $\rho \subseteq \mathbb{N}$.

(σ, ρ) -DomSet

[Telle 1994]

Given: A simple graph G.

Is there a *vertex set* $S \subseteq V(G)$ such that

- for each $v \in V(G) \cap S$, we have $|N(v) \cap S| \in \sigma$, and
- for each $v \in V(G) \setminus S$, we have $|N(v) \cap S| \in \rho$?

Selecting Vertices → Generalized Domination

Fix two sets σ , $\rho \subseteq \mathbb{N}$.

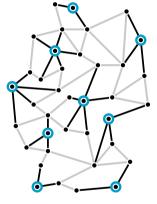
(σ, ρ) -DomSet

[Telle 1994]

Given: A simple graph G.

Is there a *vertex set* $S \subseteq V(G)$ such that

- for each $v \in V(G) \cap S$, we have $|N(v) \cap S| \in \sigma$, and
- for each $v \in V(G) \setminus S$, we have $|N(v) \cap S| \in \rho$?



 $(\{0\}, \{1\})$ -DomSet

Selecting Vertices → Generalized Domination

Fix two sets σ , $\rho \subseteq \mathbb{N}$.

(σ, ρ) -DomSet

[Telle 1994]

Given: A simple graph G.

Is there a *vertex set* $S \subseteq V(G)$ such that

- for each $v \in V(G) \cap S$, we have $|N(v) \cap S| \in \sigma$, and
- for each $v \in V(G) \setminus S$, we have $|N(v) \cap S| \in \rho$?

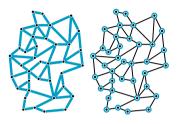
	Sel.	Uns.	σ	ρ
Total 2-Dom.	≥ 1	≥ 2	{1, 2, }	{2, 3, }
Independent Set	= 0	≥ 0	{0}	\mathbb{N}
Dominating Set	≥ 0	≥ 1	N	$\{1,2,\dots\}$
Perfect Code	= 0	= 1	{0}	{1}



({0}, {1})-DomSet

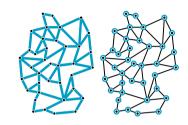
Few cases are trivial:

- $0 \in \Lambda$ or $0 \in \rho \rightarrow$ select nothing
- $\Lambda = \sigma = \mathbb{N}$ → select everything



Few cases are trivial:

- $0 \in \Lambda$ or $0 \in \rho \rightarrow$ select nothing
- $\Lambda = \sigma = \mathbb{N}$ → select everything

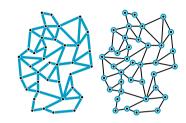


Our approach to the general cases:

■ Restrict input graphs

Few cases are trivial:

- $0 \in \Lambda$ or $0 \in \rho \rightarrow$ select nothing
- $\Lambda = \sigma = \mathbb{N}$ → select everything

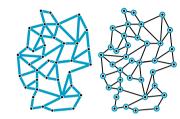


Our approach to the general cases:

- Restrict input graphs
- Study parameterization by *treewidth*

Few cases are trivial:

- $0 \in \Lambda$ or $0 \in \rho \rightarrow$ select nothing
- $\Lambda = \sigma = \mathbb{N}$ → select everything



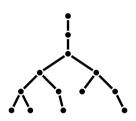
Our approach to the general cases:

- Restrict input graphs
- Study parameterization by *treewidth*
- Consider *finite* and *cofinite* sets (i.e., the set or its complement is finite)

 → covers most classical problems already

Motivation

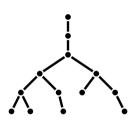
Frequently straight-forward algorithms for trees



Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs



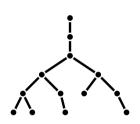
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

■ measures how "tree-like" a graph is.



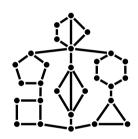
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

■ measures how "tree-like" a graph is.



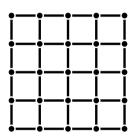
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

■ measures how "tree-like" a graph is.



Large treewidth!

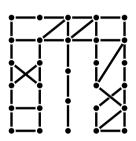
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

measures how "tree-like" a graph is.



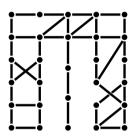
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

- measures how "tree-like" a graph is.
- has a definition that is hard to digest.



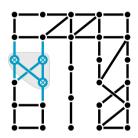
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

- measures how "tree-like" a graph is.
- has a definition that is hard to digest.
- is determined by special separators, referred to as "bags".



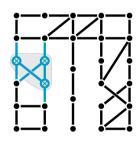
Motivation

Frequently straight-forward algorithms for trees

→ Extend to general graphs

Treewidth ...

- measures how "tree-like" a graph is.
- has a definition that is hard to digest.
- is determined by special separators, referred to as "bags".
- depends on some tree structure that allows for DPs ("tree decomposition").



Solving the Problems: Known Results

Generalized Factor:

■ Set Λ has no large "gap": polynomial-time [Cornuéjols 1988]

Generalized Domination:

 No unified condition for polynomial-time cases (only individual results)

Solving the Problems: Known Results

Generalized Factor:

- Set Λ has no large "gap": polynomial-time [Cornuéjols 1988]
- Set is interval + 0: algorithm parameterized by treewidth [ACGMM 2018]

Generalized Domination:

- No unified condition for polynomial-time cases (only individual results)
- Finite or cofinite sets: algorithm parameterized by treewidth [VRBR 2009]

Solving the Problems: Known Results

Generalized Factor:

- Set Λ has no large "gap": polynomial-time [Cornuéjols 1988]
- Set is interval + 0: algorithm parameterized by treewidth [ACGMM 2018]

Generalized Domination:

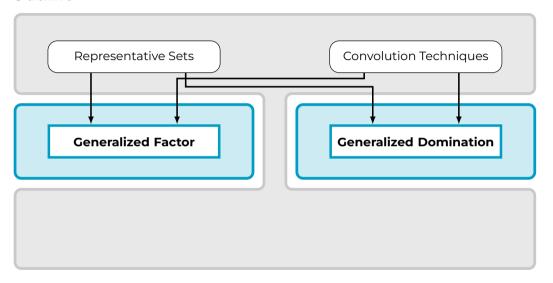
- No unified condition for polynomial-time cases (only individual results)
- Finite or cofinite sets: algorithm parameterized by treewidth [VRBR 2009]

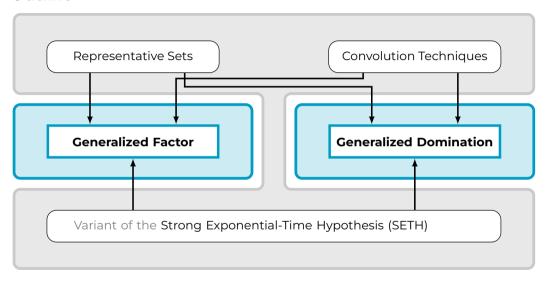
What about more general sets?

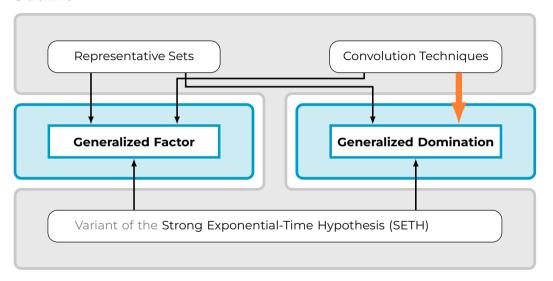
Are the known algorithms optimal?

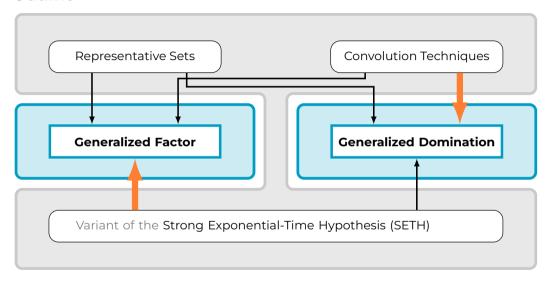
What about counting the number of solutions?

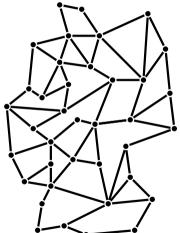
Outline Generalized Factor Generalized Domination

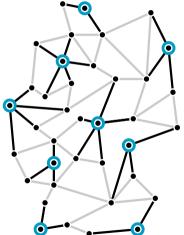


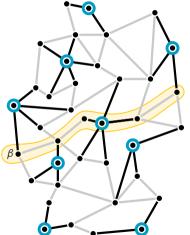






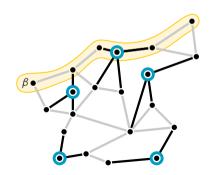






Case Study: Perfect Code = (σ, ρ) -DomSet with $\sigma = \{0\}$ and $\rho = \{1\}$

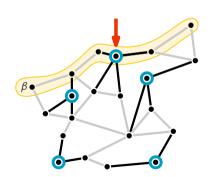
Each vertex in β can be



Case Study: Perfect Code =
$$(\sigma, \rho)$$
-DomSet with $\sigma = \{0\}$ and $\rho = \{1\}$

Each vertex in β can be

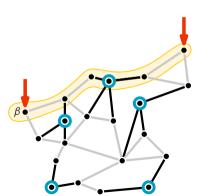
selected with 0 selected neighbors,



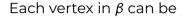
Case Study: Perfect Code =
$$(\sigma, \rho)$$
-DomSet with $\sigma = \{0\}$ and $\rho = \{1\}$

Each vertex in β can be

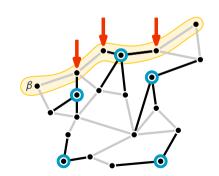
- **selected** with 0 selected neighbors,
- 2 unselected with 0 selected neighbors, or



=
$$(\sigma,
ho)$$
-DomSet with $\sigma = \{0\}$ and $ho = \{1\}$



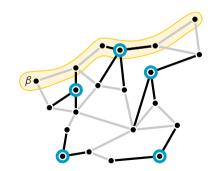
- selected with 0 selected neighbors,
- 2 unselected with 0 selected neighbors, or
- 3 unselected with 1 selected neighbor.



=
$$(\sigma,
ho)$$
-DomSet with $\sigma=\{0\}$ and $ho=\{1\}$

Each vertex in β can be

- selected with 0 selected neighbors,
- 2 unselected with 0 selected neighbors, or
- 3 unselected with 1 selected neighbor.
- Otherwise, solution is invalid!

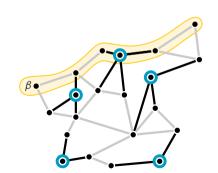


=
$$(\sigma,
ho)$$
-DomSet with $\sigma=\{0\}$ and $ho=\{1\}$

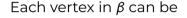
Each vertex in β can be

- selected with 0 selected neighbors,
- 2 unselected with 0 selected neighbors, or
- 3 unselected with 1 selected neighbor.
- Otherwise, solution is invalid!

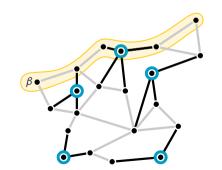
→ 3 states for each vertex



=
$$(\sigma,
ho)$$
-DomSet with $\sigma=\{0\}$ and $ho=\{1\}$



- selected with 0 selected neighbors,
- 2 unselected with 0 selected neighbors, or
- 3 unselected with 1 selected neighbor.
- Otherwise, solution is invalid!
- → 3 states for each vertex
- $\rightsquigarrow 3^{|\beta|}$ states for bag β



Recall: $3^{|\beta|}$ states for each bag β .

Recall: $3^{|\beta|}$ states for each bag β .

The algorithm:

DP over the given tree decomposition

Recall: $3^{|\beta|}$ states for each bag β .

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

Recall: $3^{|\beta|}$ states for each bag β .

The algorithm:

DP over the given tree decomposition

- + Efficient convolution techniques to combine states at join nodes
- $= 3^{\text{tw}(G)} \cdot \text{poly}(|G|)$ algorithm

Recall: $3^{|\beta|}$ states for each bag β .

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

 $= 3^{\text{tw}(G)} \cdot \text{poly}(|G|) \text{ algorithm}$

Are $3^{tw(G)}$ states actually possible?

Can we do better?

Recall: $3^{|\beta|}$ states for each bag β .

The algorithm:

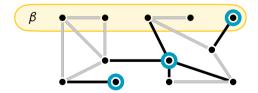
DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

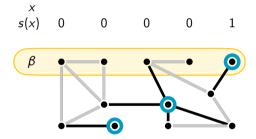
 $= 3^{\text{tw}(G)} \cdot \text{poly}(|G|) \text{ algorithm}$

Are $3^{tw(G)}$ states actually possible? **No!**

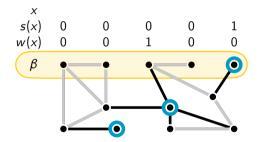
Can we do better? Yes!



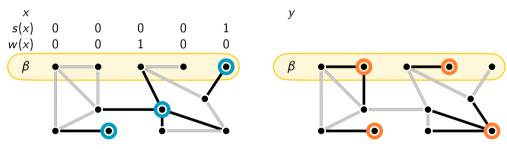
■ Define $\{0,1\}$ -vector encoding selection status \rightsquigarrow selection-vector s



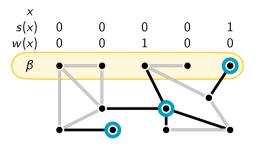
- Define $\{0,1\}$ -vector encoding selection status \rightsquigarrow selection-vector s
- Define vector with number of selected neighbors \rightsquigarrow weight-vector w

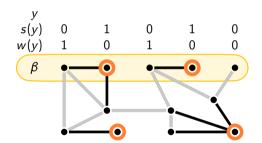


- Define $\{0,1\}$ -vector encoding selection status \rightsquigarrow selection-vector s
- Define vector with number of selected neighbors \rightsquigarrow weight-vector w
- Consider two solutions:

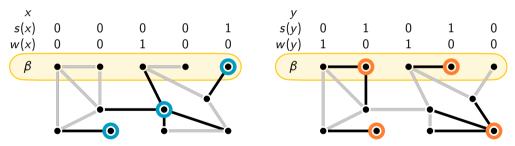


- Define $\{0,1\}$ -vector encoding selection status \rightsquigarrow selection-vector s
- Define vector with number of selected neighbors \rightsquigarrow weight-vector w
- Consider two solutions:





- Define $\{0,1\}$ -vector encoding selection status \rightsquigarrow selection-vector s
- Define vector with number of selected neighbors \rightsquigarrow weight-vector w
- Consider two solutions:



- Vectors are orthogonal: $s(x) \cdot w(y) = s(y) \cdot w(x) = 0$
- Not too many vectors/solutions can satisfy this property

Solving (σ, ρ) -DomSet: A Faster Algorithm

Key Result

Only $2^{\mathsf{tw}(G)}$ of the $3^{\mathsf{tw}(G)}$ states might have solutions!

Key Result

Only $2^{tw(G)}$ of the $3^{tw(G)}$ states might have solutions!

Problem: Convolution still considers all $3^{tw(G)}$ possible states.

Key Result

Only $2^{tw(G)}$ of the $3^{tw(G)}$ states might have solutions!

Problem: Convolution still considers all $3^{tw(G)}$ possible states.

Adjusted algorithm:

Use orthogonality to compress vectors

Key Result

Only $2^{tw(G)}$ of the $3^{tw(G)}$ states might have solutions!

Problem: Convolution still considers all $3^{tw(G)}$ possible states.

Adjusted algorithm:

- Use orthogonality to compress vectors
- 2 Use convolution techniques to obtain a faster DP

Key Result

Only $2^{tw(G)}$ of the $3^{tw(G)}$ states might have solutions!

Problem: Convolution still considers all $3^{tw(G)}$ possible states.

Adjusted algorithm:

- Use orthogonality to compress vectors
- 2 Use convolution techniques to obtain a faster DP
- 3 Use orthogonality to decompress vectors again

Key Result

Only $2^{tw(G)}$ of the $3^{tw(G)}$ states might have solutions!

Problem: Convolution still considers all $3^{tw(G)}$ possible states.

Adjusted algorithm:

- Use orthogonality to compress vectors
- 2 Use convolution techniques to obtain a faster DP
- 3 Use orthogonality to decompress vectors again
- \rightarrow Algorithm with runtime $2^{\text{tw}(G)} \cdot \text{poly}(|G|)$ before: $3^{\text{tw}(G)} \cdot \text{poly}(|G|)$

Key Result

Only $2^{tw(G)}$ of the $3^{tw(G)}$ states might have solutions!

Problem: Convolution still considers all $3^{tw(G)}$ possible states.

Adjusted algorithm:

- Use orthogonality to compress vectors
- 2 Use convolution techniques to obtain a faster DP
- 3 Use orthogonality to decompress vectors again
- ightharpoonup Algorithm with runtime $\mathbf{2}^{\text{tw}(G)} \cdot \text{poly}(|G|)$ before: $\mathbf{3}^{\text{tw}(G)} \cdot \text{poly}(|G|)$

We extend this to other sets as well!

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we define a constant $c_{\sigma,\rho}$ such that

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we define a constant $c_{\sigma,\rho}$ such that

Theorem

We solve (σ, ρ) -DomSet in time $(c_{\sigma,\rho})^{tw} \cdot poly(|G|)$ if a tree decomposition of width twis given.

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we define a constant $c_{\sigma,\rho}$ such that

Theorem

We solve (σ, ρ) -DomSet in time $(c_{\sigma,\rho})^{tw} \cdot poly(|G|)$ if a tree decomposition of width tw is given.

Algorithm works for

- (exact) decision version,
- minimization and maximization version, and
- counting version.

For finite or cofinite σ , $\rho \subseteq \mathbb{N}$, we define a constant $c_{\sigma,\rho}$ such that

Theorem

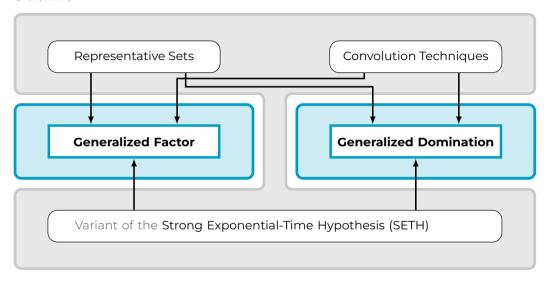
We solve (σ, ρ) -DomSet in time $(c_{\sigma,\rho})^{tw} \cdot \text{poly}(|G|)$ if a tree decomposition of width tw is given.

Algorithm works for

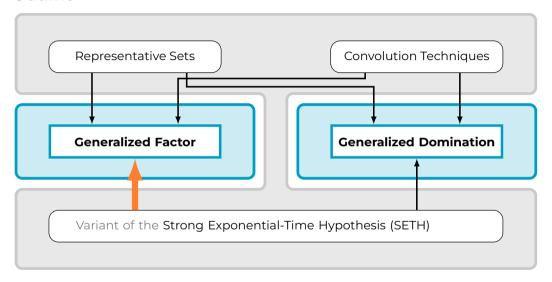
- (exact) decision version,
- minimization and maximization version, and
- counting version.

Next goal: Check if constant $c_{\sigma,\rho}$ is optimal.

Outline



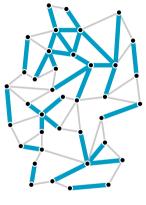
Outline



Λ-Factor: Upper Bound

For simplicity, consider finite sets for now.

Each vertex can have $\max \Lambda + 1$ intermediate states.



$$\Lambda = \{1,4\}$$

Λ-Factor: Upper Bound

For simplicity, consider finite sets for now.

Each vertex can have $\max \Lambda + 1$ intermediate states.

Theorem

For every finite set $\Lambda \subseteq \mathbb{N}$:

We solve Λ -Factor in time $(\max \Lambda + 1)^{\mathsf{tw}} \cdot \mathsf{poly}(|\mathcal{G}|)$

if a tree decomposition of width tw is given.

$$\Lambda = \{1,4\}$$

Λ-Factor: Upper Bound

For simplicity, consider finite sets for now.

Each vertex can have $\max \Lambda + 1$ intermediate states.

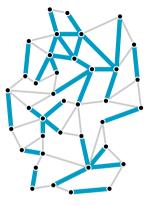
Theorem

For every finite set $\Lambda \subseteq \mathbb{N}$:

We solve Λ -Factor in time $(\max \Lambda + 1)^{tw} \cdot poly(|G|)$ if a tree decomposition of width twis given.

Prove:

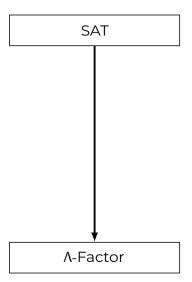
No algorithm with running time $(\max \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ exists.



$$\Lambda = \{1,4\}$$

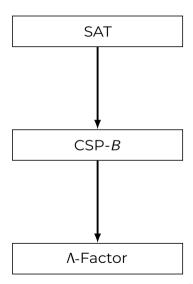
■ *Un*conditionally extremely difficult

- *Un*conditionally extremely difficult
- Use difficulty of well-studied problems
- → Suitable reduction gives good lower bound



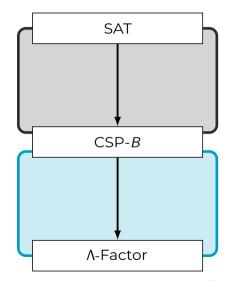
- *Un*conditionally extremely difficult
- Use difficulty of well-studied problems
- → Suitable reduction gives good lower bound
- Use better suited, more flexible CSP-B problem (variables can take B values)

 [Lampis 2020 & 2025]



- *Un*conditionally extremely difficult
- Use difficulty of well-studied problems
- → Suitable reduction gives good lower bound
- Use better suited, more flexible CSP-B problem (variables can take B values)

 [Lampis 2020 & 2025]
- → Simplified reductions that are easier to understand



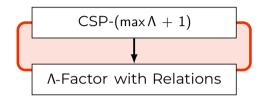
Prove: No algorithm with running time $(\max \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ exists.

Prove: No algorithm with running time $(\max \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ exists.

CSP-(
$$\max \Lambda + 1$$
)

Λ-Factor

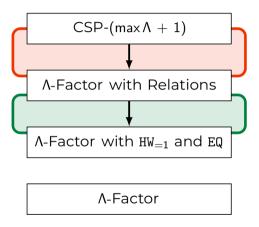
Prove: No algorithm with running time $(\max \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ exists.



Encode the variable assignment by edge selections

Λ-Factor

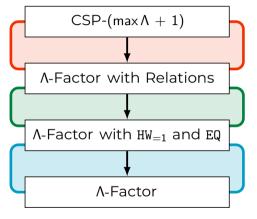
Prove: No algorithm with running time $(\max \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ exists.



Encode the variable assignment by edge selections

Model general relations by two simple relations

Prove: No algorithm with running time $(\max \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ exists.



Encode the variable assignment by edge selections

Model general relations by two simple relations

Exploit properties of Λ to realize the remaining relations

Fix a finite or cofinite set $\Lambda \subseteq \mathbb{N}$.

Define top $\Lambda := \max \Lambda$ if Λ is finite and top $\Lambda := \max(\mathbb{Z} \setminus \Lambda) + 1$ if Λ is cofinite.

Example: $top{1,4} = 4$ and $top{1,4,5,6,...} = 4$

Fix a finite or cofinite set $\Lambda \subseteq \mathbb{N}$.

Define top $\Lambda := \max \Lambda$ if Λ is finite and top $\Lambda := \max(\mathbb{Z} \setminus \Lambda) + 1$ if Λ is cofinite.

Theorem (Upper Bound)

We solve Λ -Factor in time $(top \Lambda + 1)^{tw} \cdot poly(|G|)$

if a tree decomposition of width tw is given.

Fix a finite or cofinite set $\Lambda \subseteq \mathbb{N}$.

Define top $\Lambda := \max \Lambda$ if Λ is finite and top $\Lambda := \max(\mathbb{Z} \setminus \Lambda) + 1$ if Λ is cofinite.

Theorem (Upper Bound)

We solve the *counting version* of Λ -Factor in time $(top \Lambda + 1)^{tw} \cdot poly(|G|)$ if a tree decomposition of width tw is given.

Fix a finite or cofinite set $\Lambda \subseteq \mathbb{N}$.

Define top $\Lambda := \max \Lambda$ if Λ is finite and top $\Lambda := \max(\mathbb{Z} \setminus \Lambda) + 1$ if Λ is cofinite.

Theorem (Upper Bound)

We solve the counting version of Λ -Factor in time $(top \Lambda + 1)^{tw} \cdot poly(|G|)$ if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, Λ -#Factor has no $(top \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ algorithm for non-poly-time sets even if a tree decomposition of width tw is given.

Fix a finite or cofinite set $\Lambda \subseteq \mathbb{N}$.

Define top $\Lambda := \max \Lambda$ if Λ is finite and top $\Lambda := \max(\mathbb{Z} \setminus \Lambda) + 1$ if Λ is cofinite.

Theorem (Upper Bound)

We solve the counting version of Λ -Factor in time $(top \Lambda + 1)^{tw} \cdot poly(|G|)$ if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, Λ -#Factor has no $(top \Lambda + 1 - \varepsilon)^{tw} \cdot poly(|G|)$ algorithm for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:

- Finite set: Similar lower bound
- Cofinite set: Improved algorithm but no matching lower bound

Fix two finite or cofinite sets σ , $\rho \subseteq \mathbb{N}$.

Theorem (Upper Bound)

We solve the *counting version* of (σ, ρ) -DomSet in time $(c_{\sigma,\rho})^{tw} \cdot poly(|G|)$ if a tree decomposition of width tw is given.

Fix two finite or cofinite sets σ , $\rho \subseteq \mathbb{N}$.

Theorem (Upper Bound)

We solve the counting version of (σ, ρ) -DomSet in time $(c_{\sigma,\rho})^{tw} \cdot \text{poly}(|G|)$ if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, (σ, ρ) -#DomSet has no $(c_{\sigma, \rho} - \varepsilon)^{\text{tw}} \cdot \text{poly}(|G|)$ algorithm for non-poly-time sets even if a tree decomposition of width tw is given.

Fix two finite or cofinite sets σ , $\rho \subseteq \mathbb{N}$.

Theorem (Upper Bound)

We solve the counting version of (σ, ρ) -DomSet in time $(c_{\sigma,\rho})^{tw} \cdot \text{poly}(|G|)$ if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, (σ, ρ) -#DomSet has no $(c_{\sigma,\rho} - \varepsilon)^{\text{tw}} \cdot \text{poly}(|G|)$ algorithm for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:

- Finite sets: Similar lower bound
- Cofinite sets: Improved algorithm but *no* lower bound

Problem		Deciding
Λ-Factor	Λ finite	tight
	Λ cofinite	improved algorithm,
		gap remains

Problem		Deciding	
Λ-Factor	Λ finite	tight	
N-Factor	Λ cofinite	improved algorithm,	
	// COMME	gap remains	
(z a) DomSat	σ and $ ho$ finite	tight	
(σ, ρ) -DomSet	σ or ρ cofinite	improved algorithm,	
		no lower bound	

Problem		Deciding	Counting	
Λ-Factor	Λ finite	tight	tight,	
	Λ cofinite	improved algorithm, gap remains		
(σ, ho) -DomSet	σ and $ ho$ finite	tight	tight	
	σ or $ ho$ cofinite	improved algorithm, no lower bound		

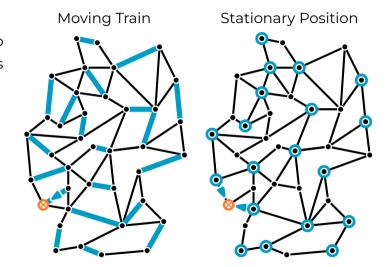
Problem		Deciding	Counting	
Λ-Factor	Λ finite	tight	- tight	
	Λ cofinite	improved algorithm, gap remains		
(σ, ρ) -DomSet	σ and $ ho$ finite	tight tight		
	σ or ρ cofinite	improved algorithm, no lower bound	ugnt	

Open questions: Close gaps? More general sets? Other parameters?

Fire Protection Train (FPT) Problem

Task:

Find (few) locations to position the fire trains at.

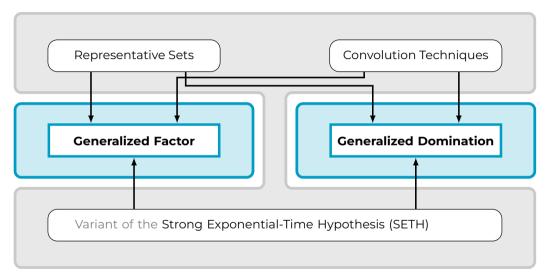


Fire Protection Train (FPT) Problem

Task: Moving Train Stationary Position Find (few) locations to position the fire trains at. FPT is FPT parameterized by treewidth!

Appendix

Outline



(σ, ρ) -DomSet: Structured Pairs

m-structured (σ, ρ)

For $m \geq 2$, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

(σ, ρ) -DomSet: Structured Pairs

m-structured (σ, ρ)

For $m \geq 2$, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Examples:

σ	ho	m-structured for
{1,3}	{4}	m=2
{0,4}	$\{1, 9\}$	m = 2, 4
{0}	$\{1\}$	every m ≥ 2
$\{0, 3\}$	$\{1,5\}$	no m \geq 2
$\{d\}$	\mathbb{N}	no m ≥ 2

(σ, ρ) -DomSet: Structured Pairs

m-structured (σ, ρ)

For $m \geq 2$, (σ, ρ) is m-structured if there are α and β such that for all $s \in \sigma$ we have $s \equiv \alpha \mod m$ and for all $r \in \rho$ we have $r \equiv \beta \mod m$.

Examples:

σ	ho	m-structured for	
{1,3}	{4}	m = 2	
$\{0, 4\}$	$\{1, 9\}$	m = 2, 4	
{0}	$\{1\}$	every m ≥ 2	
$\{0, 3\}$	$\{1,5\}$	no m ≥ 2	
$\{d\}$	\mathbb{N}	$no\;m\geq 2$	

If (σ, ρ) is m-structured for some $m \ge 2$, we show an improved algorithm.

(σ, ρ) -DomSet: Our Contribution (Formalized)

Definition for finite or cofinite $\sigma, \rho \subseteq \mathbb{N}$

if
$$(\sigma, \rho)$$
 is not m-structured,

■
$$c_{\sigma,\rho} := \max(\operatorname{top} \sigma, \operatorname{top} \rho) + 2$$
 if $\operatorname{top} \sigma = \operatorname{top} \rho$ is even and (σ, ρ) is 2-structured but not $m > 3$ -structured, and

if
$$top \sigma = top \rho$$
 is even

$$lacksquare$$
 $c_{\sigma,\rho} := \max(\operatorname{top} \sigma, \operatorname{top}
ho) + 1$

otherwise.

(σ, ρ) -DomSet: Our Contribution (Formalized)

Definition for finite or cofinite σ , $\rho \subseteq \mathbb{N}$

$$= c_{\sigma,\rho} := top \sigma + top \rho + 2$$

if
$$(\sigma, \rho)$$
 is not m-structured,

■
$$c_{\sigma,\rho} := \max(\operatorname{top} \sigma, \operatorname{top} \rho) + 2$$
 if $\operatorname{top} \sigma = \operatorname{top} \rho$ is even and (σ, ρ) is 2-structured but not $m \geq 3$ -structured, and

$$lacksquare c_{\sigma,
ho} \coloneqq \mathsf{max}(\mathsf{top}\,\sigma,\mathsf{top}\,
ho) + 1$$

otherwise.

Theorem (Upper Bound)

We can solve (σ, ρ) -#DomSet in time $(c_{\sigma, \rho})^{\mathsf{tw}} \cdot \mathsf{poly}(|G|)$

if a tree decomposition of width tw is given.

(σ, ρ) -DomSet: Our Contribution (Formalized)

Definition for finite or cofinite σ , $\rho \subseteq \mathbb{N}$

$$c_{\sigma,\rho} := top \sigma + top \rho + 2$$

if
$$(\sigma, \rho)$$
 is not m-structured,

$$(\sigma, top \rho) + 2$$
 if $top \sigma = top \rho$ is even and (σ, ρ) is 2-structured but not $m > 3$ -structured, and

$$\blacksquare \ c_{\sigma,\rho} := \max(\operatorname{top} \sigma, \operatorname{top} \rho) + 1$$

otherwise.

Theorem (Upper Bound)

We can solve (σ, ρ) -#DomSet in time $(c_{\sigma, \rho})^{\mathsf{tw}} \cdot \mathsf{poly}(|G|)$

if a tree decomposition of width tw is given.

Theorem (Lower Bound)

Unless #SETH fails, (σ, ρ) -#DomSet has no $(c_{\sigma, \rho} - \varepsilon)^{\text{tw}} \cdot \text{poly}(|G|)$ algorithm for non-trivial sets, even if a tree decomposition of width twis given.

 $\Lambda\text{-Factor with }\Lambda=\mathbb{N}\setminus\{0,1024\}$

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

Can we improve this? Are all partial solutions relevant?

 \blacksquare Fix a vertex v.

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

- \blacksquare Fix a vertex v.
- Fix three solutions with degree 0, 256, and 1024 for v, respectively.

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

- \blacksquare Fix a vertex v.
- Fix three solutions with degree 0, 256, and 1024 for v, respectively.
- \blacksquare A future extension increases the degree of v by f.

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

- \blacksquare Fix a vertex v.
- Fix three solutions with degree 0, 256, and 1024 for v, respectively.
- \blacksquare A future extension increases the degree of v by f.
- One of these three solutions can be combined with f as $\{0+f,256+f,1024+f\} \neq \{0,1024\} = \mathbb{N} \setminus \Lambda$.

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

- \blacksquare Fix a vertex v.
- Fix three solutions with degree 0, 256, and 1024 for v, respectively.
- \blacksquare A future extension increases the degree of v by f.
- One of these three solutions can be combined with f as $\{0 + f, 256 + f, 1024 + f\} \neq \{0, 1024\} = \mathbb{N} \setminus \Lambda$.
- \rightarrow $|\mathbb{N} \setminus \Lambda| + 1 = |\{0, 1024\}| = 3$ solutions suffice instead of 1026!

Λ-Factor with $\Lambda = \mathbb{N} \setminus \{0, 1024\}$: $1026^{\mathsf{tw}(G)} \cdot \mathsf{poly}(|G|)$ algorithm.

Can we improve this? Are all partial solutions relevant?

- \blacksquare Fix a vertex v.
- Fix three solutions with degree 0, 256, and 1024 for v, respectively.
- \blacksquare A future extension increases the degree of v by f.
- One of these three solutions can be combined with f as $\{0+f,256+f,1024+f\} \neq \{0,1024\} = \mathbb{N} \setminus \Lambda$.

 \rightarrow $|\mathbb{N} \setminus \Lambda| + 1 = |\{0, 1024\}| = 3$ solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

■ Store only a *representative set* of the possible partial solutions!

$$\rightsquigarrow$$
 $(|\mathbb{N} \setminus \Lambda| + 1)^{tw}$ solutions suffice instead of $(\max(\mathbb{N} \setminus \Lambda) + 2)^{tw}$.

- Store only a *representative set* of the possible partial solutions! $\rightsquigarrow (|\mathbb{N} \setminus \Lambda| + 1)^{tw}$ solutions suffice instead of $(\max(\mathbb{N} \setminus \Lambda) + 2)^{tw}$.
- Combine this with classical DP.

- Store only a *representative set* of the possible partial solutions! $\rightsquigarrow (|\mathbb{N} \setminus \Lambda| + 1)^{tw}$ solutions suffice instead of $(\max(\mathbb{N} \setminus \Lambda) + 2)^{tw}$.
- Combine this with classical DP.

Theorem

Fix a finite set $X \subseteq \mathbb{N}$. We can solve $(\mathbb{N} \setminus X)$ -Factor in time $(|X|+1)^{4\mathsf{tw}} \cdot \mathsf{poly}(|G|)$ if a tree decomposition of width tw is given.

- Store only a *representative set* of the possible partial solutions!
 - \rightsquigarrow $(|\mathbb{N} \setminus \Lambda| + 1)^{tw}$ solutions suffice instead of $(\max(\mathbb{N} \setminus \Lambda) + 2)^{tw}$.
- Combine this with classical DP.

Theorem

Fix a finite set $X \subseteq \mathbb{N}$. We can solve $(\mathbb{N} \setminus X)$ -Factor in time $(|X|+1)^{4\mathsf{tw}} \cdot \mathsf{poly}(|G|)$ if a tree decomposition of width tw is given.

Algorithm improves from 1026^{tw} to $3^{4tw} = 81^{tw}$.

- Store only a representative set of the possible partial solutions! $\rightsquigarrow (|\mathbb{N} \setminus \Lambda| + 1)^{tw}$ solutions suffice instead of $(\max(\mathbb{N} \setminus \Lambda) + 2)^{tw}$.
- Combine this with classical DP.

Theorem

Fix a finite set $X \subseteq \mathbb{N}$. We can solve $(\mathbb{N} \setminus X)$ -Factor in time $(|X|+1)^{4\mathsf{tw}} \cdot \mathsf{poly}(|G|)$ if a tree decomposition of width tw is given.

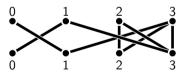
Algorithm improves from 1026^{tw} to $3^{4tw} = 81^{tw}$.

We show a similar result for (σ, ρ) -DomSet.

Note: Incompatible with counting version ("every solution matters")!

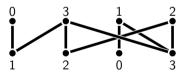
Definition (Half-Induced Matching)

- \blacksquare $(a_i, b_i) \in E$ for all i, and
- \blacksquare $(a_i, b_j) \notin E$ for all i < j.



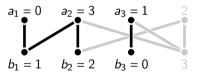
Definition (Half-Induced Matching)

- \blacksquare $(a_i, b_i) \in E$ for all i, and
- \blacksquare $(a_i, b_j) \notin E$ for all i < j.



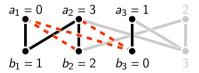
Definition (Half-Induced Matching)

- \blacksquare $(a_i, b_i) \in E$ for all i, and
- \blacksquare $(a_i, b_j) \notin E$ for all i < j.



Definition (Half-Induced Matching)

- \blacksquare $(a_i, b_i) \in E$ for all i, and
- \blacksquare $(a_i, b_j) \notin E$ for all i < j.



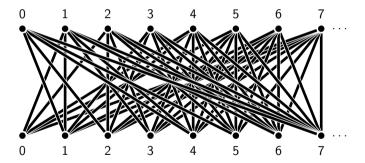
Half-induced matching of size 3

Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$

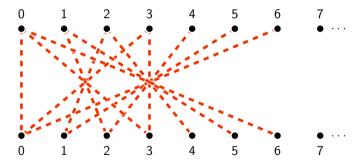
Draw edge from *i* to *i* if $i + i \in \Lambda$:

0 1 2 3 4 5 6 7

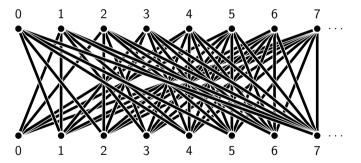
Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$



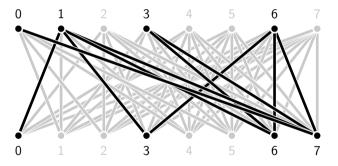
Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$



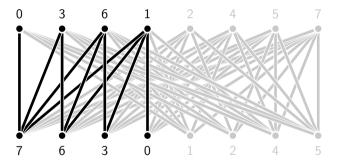
Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$



Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$

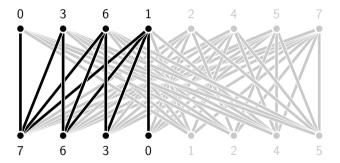


Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$



Consider Λ -Factor with $\Lambda = \mathbb{N} \setminus \{0, 3, 6\}$

Draw edge from i to j if $i + j \in \Lambda$:



Our observation:

A larger half-induced matching provides a better lower bound!

Convolution Techniques

Extend algorithm by van Rooij in multiple steps:

[van Rooij 2020]

S Cyclic convolution:

Extend existing algorithm by computation of prime numbers

A Normal addition:

Use cyclic convolution and encode checksum by L to detect overflows

L Normal addition with large numbers:

Use cyclic convolution and encode checksum in binary to detect overflows

Truncated addition:

Use normal addition and zeta- and Möbius-transform

Lower Bound: Known Hypotheses

Strong Exponential Time Hypothesis (SETH)

[IP 2001, CIP 2009]

For all $\delta > 0$, there is a $k \geq 3$ such that satisfiability of k-CNF formulas on n variables cannot be solved in time $(2 - \delta)^n$.

Constraint Satisfaction Hypothesis (CSPH)

[Lampis 2020]

For all $B \ge 2$ and $\varepsilon > 0$, there exists a q such that q-CSP-B with n variables cannot be solved in time $(B - \varepsilon)^n \cdot n^{\mathcal{O}(1)}$.

Primal Pathwidth SETH (pw-SETH)

[Lampis 2025]

For all $\varepsilon > 0$, there is no algorithm which takes as input a 3-SAT instance ϕ and a path decomposition of its primal graph of width pw and correctly decides if ϕ is satisfiable in time $(2 - \varepsilon)^{pw} \cdot |\phi|^{\mathcal{O}(1)}$.

Lower Bound: New Hypothesis

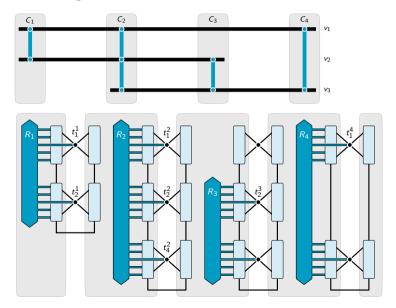
mono-pw-CSPH

For all $B \ge 2$ and $\varepsilon > 0$, there exists a q such that no algorithm can, for a q-CSP-B instance ϕ that is given with

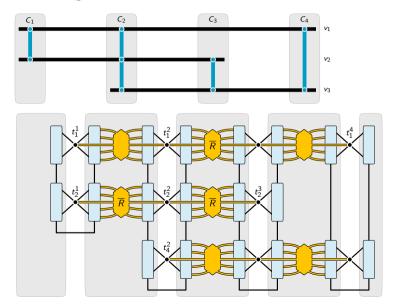
- \blacksquare a partition $V_1 \cup V_2$ of the variables,
- \blacksquare a nice path decomposition of the primal graph of ϕ of width w
- lacktriangle where every bag contains at most $\mathcal{O}(B \cdot \log |V_1|)$ variables from V_2 ,
- \blacksquare an injective mapping c from the constraints of ϕ to the bags,
- the promise that every satisfying multi-assignment that is consistent on V_2 is also consistent on V_1 ,

decide if there is a monotone satisfying multi-assignment that is consistent on V_2 in time $(B - \varepsilon)^w \cdot |\phi|^{\mathcal{O}(1)}$.

Lower Bound: High-Level Construction



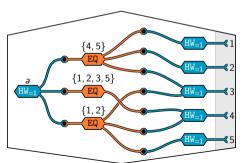
Lower Bound: High-Level Construction



Lower Bound: Realizing Relations

To realize arbitrary relations it suffices to

- force a single vertex/edge (of a group) to be selected \rightsquigarrow HW₌₁ and
- ensure that a group of vertices/edges is consistently selected (all or none) \(\simes \) EQ.

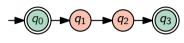


Summary (Formalized)

Problem	Algorithm	Lower Bound		
(σ, ρ) -#DomSet	$(c_{\sigma,\rho})^{\mathrm{tw}}$	no $(c_{\sigma, ho}-arepsilon)^{ m pw}$	-	
(σ, ho) -DomSet	$(c_{\sigma, ho})^{\mathrm{tw}}$	no $(c_{\sigma, ho}-arepsilon)^{ m pw}$	σ and $ ho$ finite	
	$(cost_{\sigma, ho})^{\mathcal{O}(tw)}$	open	σ or $ ho$ cofinite	
#AntiFactor _x	n ^{tw}	no n ^{pw−ε}		
Λ-#Factor		no $(\operatorname{top} \Lambda + 1 - \varepsilon)^{pw}$		
Λ-Factor	$(top\Lambda+1)^tw$	no $(\operatorname{top}\nolimits \Lambda + 1 - \varepsilon)^{pw}$	Λ finite	
		no $(h-arepsilon)^{ m pw}$	A cofinite with half- induced matching of size h	
AntiFactor _x	$(x+1)^{\mathcal{O}(tw)}$	no $(x+1-\varepsilon)^{pw}$	x degrees forbidden	

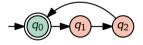
More General Sets: From States to Automata

Finite set:



$$\tau = \{0, 3\}$$

Periodic set (residue class):

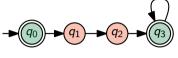


$$\tau = \{0, 3, 6, 9, \dots\}$$

Next steps:

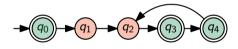
Connection to faster algorithms? Efficient convolution techniques?

Cofinite set:



$$\tau = \{0, 3, 4, 5, 6, \dots\}$$

Infinite set (ultimately periodic):



$$\tau = \{0, 3, 4, 6, 7, 9, 10, \dots\}$$