
Faster, Higher, Easier:
Toward a Systematic Study of
Parameterized Vertex and
Edge Selection Problems

Philipp Schepper

September 29, 2025

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train

Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train

Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

2

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

2

Fire Protection Train (FPT) Problem: Formalization

Edge Cover
Each vertex incident to
≥ 1 selected edge.

Total 2-Domination
Selected vertex:
≥ 1 selected neighbor.
Unselected vertex:
≥ 2 selected neighbor.

3

Fire Protection Train (FPT) Problem: Formalization

Edge Cover
Each vertex incident to
≥ 1 selected edge.

Total 2-Domination
Selected vertex:
≥ 1 selected neighbor.
Unselected vertex:
≥ 2 selected neighbor.

3

Fire Protection Train (FPT) Problem: Formalization

Edge Cover
Each vertex incident to
≥ 1 selected edge.

Total 2-Domination
Selected vertex:
≥ 1 selected neighbor.
Unselected vertex:
≥ 2 selected neighbor.

3

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

More Edge and Vertex Selection Problems

Selected Unselected
Edge Cover ≥ 1

Matching ≤ 1

Perfect Matching = 1

Cycle Packing = 0 or = 2

Total 2-Domination ≥ 1 ≥ 2

Dominating Set ≥ 0 ≥ 1

Independent Set = 0 ≥ 0

Perfect Code = 0 = 1

Encode degreeconstraints as sets!

4

Selecting Edges → Generalized Factor

Fix a set Λ ⊆ N.

Λ-Factor [Lovász 1972]

Given: A simple graph G.

Is there an edge set S ⊆ E(G) such that
for every vertex v ∈ V (G) we have degS(v) ∈ Λ?

Degree Λ

Edge Cover ≥ 1 {1; 2; 3; : : : }
Matching ≤ 1 {0; 1}
Perfect Matching = 1 {1}
Cycle Packing = 0 or = 2 {0; 2}

5

Selecting Edges → Generalized Factor

Fix a set Λ ⊆ N.

Λ-Factor [Lovász 1972]

Given: A simple graph G.

Is there an edge set S ⊆ E(G) such that
for every vertex v ∈ V (G) we have degS(v) ∈ Λ?

Degree Λ

Edge Cover ≥ 1 {1; 2; 3; : : : }
Matching ≤ 1 {0; 1}
Perfect Matching = 1 {1}
Cycle Packing = 0 or = 2 {0; 2}

{1; 2; 3; : : : }-Factor

5

Selecting Edges → Generalized Factor

Fix a set Λ ⊆ N.

Λ-Factor [Lovász 1972]

Given: A simple graph G.

Is there an edge set S ⊆ E(G) such that
for every vertex v ∈ V (G) we have degS(v) ∈ Λ?

Degree Λ

Edge Cover ≥ 1 {1; 2; 3; : : : }
Matching ≤ 1 {0; 1}
Perfect Matching = 1 {1}
Cycle Packing = 0 or = 2 {0; 2}

{1; 2; 3; : : : }-Factor

5

Selecting Edges → Generalized Factor

Fix a set Λ ⊆ N.

Λ-Factor [Lovász 1972]

Given: A simple graph G.

Is there an edge set S ⊆ E(G) such that
for every vertex v ∈ V (G) we have degS(v) ∈ Λ?

Degree Λ

Edge Cover ≥ 1 {1; 2; 3; : : : }
Matching ≤ 1 {0; 1}
Perfect Matching = 1 {1}
Cycle Packing = 0 or = 2 {0; 2}

{0; 2; 4; 6; : : : }-Factor

5

Selecting Vertices → Generalized Domination

Fix two sets ff; ȷ ⊆ N.

(ff; ȷ)-DomSet [Telle 1994]

Given: A simple graph G.

Is there a vertex set S ⊆ V (G) such that
– for each v ∈ V (G) ∩ S, we have |N(v) ∩ S| ∈ ff, and
– for each v ∈ V (G) \ S, we have |N(v) ∩ S| ∈ ȷ?

Sel. Uns. ff ȷ

Total 2-Dom. ≥ 1 ≥ 2 {1; 2; : : : } {2; 3; : : : }
Independent Set = 0 ≥ 0 {0} N

Dominating Set ≥ 0 ≥ 1 N {1; 2; : : : }
Perfect Code = 0 = 1 {0} {1}

6

Selecting Vertices → Generalized Domination

Fix two sets ff; ȷ ⊆ N.

(ff; ȷ)-DomSet [Telle 1994]

Given: A simple graph G.

Is there a vertex set S ⊆ V (G) such that
– for each v ∈ V (G) ∩ S, we have |N(v) ∩ S| ∈ ff, and
– for each v ∈ V (G) \ S, we have |N(v) ∩ S| ∈ ȷ?

Sel. Uns. ff ȷ

Total 2-Dom. ≥ 1 ≥ 2 {1; 2; : : : } {2; 3; : : : }
Independent Set = 0 ≥ 0 {0} N

Dominating Set ≥ 0 ≥ 1 N {1; 2; : : : }
Perfect Code = 0 = 1 {0} {1}

({0}; {1})-DomSet

6

Selecting Vertices → Generalized Domination

Fix two sets ff; ȷ ⊆ N.

(ff; ȷ)-DomSet [Telle 1994]

Given: A simple graph G.

Is there a vertex set S ⊆ V (G) such that
– for each v ∈ V (G) ∩ S, we have |N(v) ∩ S| ∈ ff, and
– for each v ∈ V (G) \ S, we have |N(v) ∩ S| ∈ ȷ?

Sel. Uns. ff ȷ

Total 2-Dom. ≥ 1 ≥ 2 {1; 2; : : : } {2; 3; : : : }
Independent Set = 0 ≥ 0 {0} N

Dominating Set ≥ 0 ≥ 1 N {1; 2; : : : }
Perfect Code = 0 = 1 {0} {1}

({0}; {1})-DomSet

6

Solving the Problems

Few cases are trivial:

0 ∈ Λ or 0 ∈ ȷ → select nothing

Λ = ff = N → select everything

Our approach to the general cases:

Study parameterization by treewidth

Consider finite and cofinite sets (i.e., the set or its complement is finite)
 covers most classical problems already

7

Solving the Problems

Few cases are trivial:

0 ∈ Λ or 0 ∈ ȷ → select nothing

Λ = ff = N → select everything

Our approach to the general cases:

Restrict input graphs

Study parameterization by treewidth

Consider finite and cofinite sets (i.e., the set or its complement is finite)
 covers most classical problems already

7

Solving the Problems

Few cases are trivial:

0 ∈ Λ or 0 ∈ ȷ → select nothing

Λ = ff = N → select everything

Our approach to the general cases:

((((((((((((hhhhhhhhhhhh
Restrict input graphs

Study parameterization by treewidth

Consider finite and cofinite sets (i.e., the set or its complement is finite)
 covers most classical problems already

7

Solving the Problems

Few cases are trivial:

0 ∈ Λ or 0 ∈ ȷ → select nothing

Λ = ff = N → select everything

Our approach to the general cases:

((((((((((((hhhhhhhhhhhh
Restrict input graphs

Study parameterization by treewidth

Consider finite and cofinite sets (i.e., the set or its complement is finite)
 covers most classical problems already

7

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees

 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Interlude: Treewidth

Motivation
Frequently straight-forward algorithms for trees
 Extend to general graphs

Treewidth . . .

measures how “tree-like” a graph is.

has a definition that is hard to digest.

is determined by special separators, referred to
as “bags”.

depends on some tree structure that allows for
DPs (“tree decomposition”).

Large treewidth!

8

Solving the Problems: Known Results

Generalized Factor:

Set Λ has no large “gap”:
polynomial-time
[Cornuéjols 1988]

Set is interval + 0:
algorithm parameterized
by treewidth [ACGMM 2018]

What about more general sets?

Generalized Domination:

No unified condition for
polynomial-time cases
(only individual results)

Finite or cofinite sets:
algorithm parameterized
by treewidth [vRBR 2009]

Are the known algorithms optimal?

What about counting the number of solutions?

9

Solving the Problems: Known Results

Generalized Factor:

Set Λ has no large “gap”:
polynomial-time
[Cornuéjols 1988]

Set is interval + 0:
algorithm parameterized
by treewidth [ACGMM 2018]

What about more general sets?

Generalized Domination:

No unified condition for
polynomial-time cases
(only individual results)

Finite or cofinite sets:
algorithm parameterized
by treewidth [vRBR 2009]

Are the known algorithms optimal?

What about counting the number of solutions?

9

Solving the Problems: Known Results

Generalized Factor:

Set Λ has no large “gap”:
polynomial-time
[Cornuéjols 1988]

Set is interval + 0:
algorithm parameterized
by treewidth [ACGMM 2018]

What about more general sets?

Generalized Domination:

No unified condition for
polynomial-time cases
(only individual results)

Finite or cofinite sets:
algorithm parameterized
by treewidth [vRBR 2009]

Are the known algorithms optimal?

What about counting the number of solutions?

9

Outline

Generalized Factor Generalized Domination

10

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

10

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

Variant of the Strong Exponential-Time Hypothesis (SETH)

10

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

Variant of the Strong Exponential-Time Hypothesis (SETH)

10

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

Variant of the Strong Exponential-Time Hypothesis (SETH)

10

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Idea

Case Study: Perfect Code = (ff; ȷ)-DomSet with ff = {0} and ȷ = {1}

˛

Each vertex in ˛ can be

1 selected with 0 selected neighbors,

2 unselected with 0 selected neighbors, or

3 unselected with 1 selected neighbor.

¨ Otherwise, solution is invalid!

 3 states for each vertex

 3|˛| states for bag ˛

11

Solving (ff; ȷ)-DomSet: Algorithm

Recall: 3|˛| states for each bag ˛.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

= 3tw(G) · poly(|G|) algorithm

Are 3tw(G) states actually possible?
Can we do better?

12

Solving (ff; ȷ)-DomSet: Algorithm

Recall: 3|˛| states for each bag ˛.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

= 3tw(G) · poly(|G|) algorithm

Are 3tw(G) states actually possible?
Can we do better?

12

Solving (ff; ȷ)-DomSet: Algorithm

Recall: 3|˛| states for each bag ˛.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

= 3tw(G) · poly(|G|) algorithm

Are 3tw(G) states actually possible?
Can we do better?

12

Solving (ff; ȷ)-DomSet: Algorithm

Recall: 3|˛| states for each bag ˛.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

= 3tw(G) · poly(|G|) algorithm

Are 3tw(G) states actually possible?
Can we do better?

12

Solving (ff; ȷ)-DomSet: Algorithm

Recall: 3|˛| states for each bag ˛.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

= 3tw(G) · poly(|G|) algorithm

Are 3tw(G) states actually possible?
Can we do better?

12

Solving (ff; ȷ)-DomSet: Algorithm

Recall: 3|˛| states for each bag ˛.

The algorithm:

DP over the given tree decomposition

+ Efficient convolution techniques to combine states at join nodes

= 3tw(G) · poly(|G|) algorithm

Are 3tw(G) states actually possible? No!
Can we do better? Yes!

12

Solving (ff; ȷ)-DomSet: Structural Insights

Define {0; 1}-vector encoding selection status selection-vector s

Define vector with number of selected neighbors weight-vector w

Consider two solutions:

˛

Vectors are orthogonal: s(x) · w(y) = s(y) · w(x) = 0

 Not too many vectors/solutions can satisfy this property

13

Solving (ff; ȷ)-DomSet: Structural Insights

Define {0; 1}-vector encoding selection status selection-vector s

Define vector with number of selected neighbors weight-vector w

Consider two solutions:

˛

0 0 0 0 1s(x)
x

Vectors are orthogonal: s(x) · w(y) = s(y) · w(x) = 0

 Not too many vectors/solutions can satisfy this property

13

Solving (ff; ȷ)-DomSet: Structural Insights

Define {0; 1}-vector encoding selection status selection-vector s

Define vector with number of selected neighbors weight-vector w

Consider two solutions:

˛

0 0 0 0 1
0 0 1 0 0

s(x)
x

w (x)

Vectors are orthogonal: s(x) · w(y) = s(y) · w(x) = 0

 Not too many vectors/solutions can satisfy this property

13

Solving (ff; ȷ)-DomSet: Structural Insights

Define {0; 1}-vector encoding selection status selection-vector s

Define vector with number of selected neighbors weight-vector w

Consider two solutions:

˛

0 0 0 0 1
0 0 1 0 0

s(x)
x

w (x)

˛

y

Vectors are orthogonal: s(x) · w(y) = s(y) · w(x) = 0

 Not too many vectors/solutions can satisfy this property

13

Solving (ff; ȷ)-DomSet: Structural Insights

Define {0; 1}-vector encoding selection status selection-vector s

Define vector with number of selected neighbors weight-vector w

Consider two solutions:

˛

0 0 0 0 1
0 0 1 0 0

s(x)
x

w (x)

˛

0 1 0 1 0
1 0 1 0 0

s(y)
y

w (y)

Vectors are orthogonal: s(x) · w(y) = s(y) · w(x) = 0

 Not too many vectors/solutions can satisfy this property

13

Solving (ff; ȷ)-DomSet: Structural Insights

Define {0; 1}-vector encoding selection status selection-vector s

Define vector with number of selected neighbors weight-vector w

Consider two solutions:

˛

0 0 0 0 1
0 0 1 0 0

s(x)
x

w (x)

˛

0 1 0 1 0
1 0 1 0 0

s(y)
y

w (y)

Vectors are orthogonal: s(x) · w(y) = s(y) · w(x) = 0

 Not too many vectors/solutions can satisfy this property

13

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: A Faster Algorithm

Key Result
Only 2tw(G) of the 3tw(G) states might have solutions!

Problem: Convolution still considers all 3tw(G) possible states.

Adjusted algorithm:
1 Use orthogonality to compress vectors

2 Use convolution techniques to obtain a faster DP

3 Use orthogonality to decompress vectors again

 Algorithm with runtime 2tw(G) · poly(|G|) before: 3tw(G) · poly(|G|)

We extend this to other sets as well!

14

Solving (ff; ȷ)-DomSet: Our Contribution

For finite or cofinite ff; ȷ ⊆ N, we define a constant cff;ȷ such that

Theorem
We solve (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Algorithm works for
(exact) decision version,

minimization and maximization version, and

counting version.

Next goal: Check if constant cff;ȷ is optimal.

15

Solving (ff; ȷ)-DomSet: Our Contribution

For finite or cofinite ff; ȷ ⊆ N, we define a constant cff;ȷ such that

Theorem
We solve (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Algorithm works for
(exact) decision version,

minimization and maximization version, and

counting version.

Next goal: Check if constant cff;ȷ is optimal.

15

Solving (ff; ȷ)-DomSet: Our Contribution

For finite or cofinite ff; ȷ ⊆ N, we define a constant cff;ȷ such that

Theorem
We solve (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Algorithm works for
(exact) decision version,

minimization and maximization version, and

counting version.

Next goal: Check if constant cff;ȷ is optimal.

15

Solving (ff; ȷ)-DomSet: Our Contribution

For finite or cofinite ff; ȷ ⊆ N, we define a constant cff;ȷ such that

Theorem
We solve (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Algorithm works for
(exact) decision version,

minimization and maximization version, and

counting version.

Next goal: Check if constant cff;ȷ is optimal.

15

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

Variant of the Strong Exponential-Time Hypothesis (SETH)

16

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

Variant of the Strong Exponential-Time Hypothesis (SETH)

16

Λ-Factor: Upper Bound

For simplicity, consider finite sets for now.
Each vertex can have maxΛ + 1 intermediate states.

Theorem
For every finite set Λ ⊆ N:
We solve Λ-Factor in time (max Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Prove:
No algorithm with running time
(max Λ + 1− ")tw · poly(|G|) exists.

Λ = {1; 4}

18

Λ-Factor: Upper Bound

For simplicity, consider finite sets for now.
Each vertex can have maxΛ + 1 intermediate states.

Theorem
For every finite set Λ ⊆ N:
We solve Λ-Factor in time (max Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Prove:
No algorithm with running time
(max Λ + 1− ")tw · poly(|G|) exists.

Λ = {1; 4}

18

Λ-Factor: Upper Bound

For simplicity, consider finite sets for now.
Each vertex can have maxΛ + 1 intermediate states.

Theorem
For every finite set Λ ⊆ N:
We solve Λ-Factor in time (max Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Prove:
No algorithm with running time
(max Λ + 1− ")tw · poly(|G|) exists.

Λ = {1; 4}

18

Λ-Factor: Idea for the Lower Bound

Unconditionally extremely difficult

Use difficulty of well-studied problems

 Suitable reduction gives good lower
bound

Use better suited, more flexible CSP-B
problem (variables can take B values)
[Lampis 2020 & 2025]

 Simplified reductions that are easier to
understand

19

Λ-Factor: Idea for the Lower Bound

Unconditionally extremely difficult

Use difficulty of well-studied problems

 Suitable reduction gives good lower
bound

Use better suited, more flexible CSP-B
problem (variables can take B values)
[Lampis 2020 & 2025]

 Simplified reductions that are easier to
understand

SAT

Λ-Factor

19

Λ-Factor: Idea for the Lower Bound

Unconditionally extremely difficult

Use difficulty of well-studied problems

 Suitable reduction gives good lower
bound

Use better suited, more flexible CSP-B
problem (variables can take B values)
[Lampis 2020 & 2025]

 Simplified reductions that are easier to
understand

SAT

Λ-Factor

CSP-B

19

Λ-Factor: Idea for the Lower Bound

Unconditionally extremely difficult

Use difficulty of well-studied problems

 Suitable reduction gives good lower
bound

Use better suited, more flexible CSP-B
problem (variables can take B values)
[Lampis 2020 & 2025]

 Simplified reductions that are easier to
understand

SAT

Λ-Factor

CSP-B

19

Λ-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (max Λ + 1− ")tw · poly(|G|) exists.

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

Exploit properties of Λ
to realize the remaining relations

20

Λ-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (max Λ + 1− ")tw · poly(|G|) exists.

CSP-(max Λ + 1)

Λ-Factor

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

Exploit properties of Λ
to realize the remaining relations

20

Λ-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (max Λ + 1− ")tw · poly(|G|) exists.

CSP-(max Λ + 1)

Λ-Factor with Relations

Λ-Factor

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

Exploit properties of Λ
to realize the remaining relations

20

Λ-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (max Λ + 1− ")tw · poly(|G|) exists.

CSP-(max Λ + 1)

Λ-Factor with Relations

Λ-Factor with HW=1 and EQ

Λ-Factor

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

Exploit properties of Λ
to realize the remaining relations

20

Λ-Factor: Steps of the Lower Bound

Prove: No algorithm with running time (max Λ + 1− ")tw · poly(|G|) exists.

CSP-(max Λ + 1)

Λ-Factor with Relations

Λ-Factor with HW=1 and EQ

Λ-Factor

Encode the variable assignment
by edge selections

Model general relations
by two simple relations

Exploit properties of Λ
to realize the remaining relations

20

Λ-Factor: Our Contribution

Fix a finite or cofinite set Λ ⊆ N.
Define top Λ := maxΛ if Λ is finite and top Λ := max(Z \ Λ) + 1 if Λ is cofinite.

Example: top{1; 4} = 4 and top{1; 4; 5; 6; : : : } = 4

Theorem (Upper Bound)
We solve Λ-Factor in time (top Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, Λ-#Factor has no (top Λ + 1− ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite set: Similar lower bound

Cofinite set: Improved algorithm but no matching lower bound

21

Λ-Factor: Our Contribution

Fix a finite or cofinite set Λ ⊆ N.
Define top Λ := maxΛ if Λ is finite and top Λ := max(Z \ Λ) + 1 if Λ is cofinite.

Theorem (Upper Bound)
We solve Λ-Factor in time (top Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, Λ-#Factor has no (top Λ + 1− ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite set: Similar lower bound

Cofinite set: Improved algorithm but no matching lower bound

21

Λ-Factor: Our Contribution

Fix a finite or cofinite set Λ ⊆ N.
Define top Λ := maxΛ if Λ is finite and top Λ := max(Z \ Λ) + 1 if Λ is cofinite.

Theorem (Upper Bound)
We solve the counting version of Λ-Factor in time (top Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, Λ-#Factor has no (top Λ + 1− ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite set: Similar lower bound

Cofinite set: Improved algorithm but no matching lower bound

21

Λ-Factor: Our Contribution

Fix a finite or cofinite set Λ ⊆ N.
Define top Λ := maxΛ if Λ is finite and top Λ := max(Z \ Λ) + 1 if Λ is cofinite.

Theorem (Upper Bound)
We solve the counting version of Λ-Factor in time (top Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, Λ-#Factor has no (top Λ + 1− ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite set: Similar lower bound

Cofinite set: Improved algorithm but no matching lower bound

21

Λ-Factor: Our Contribution

Fix a finite or cofinite set Λ ⊆ N.
Define top Λ := maxΛ if Λ is finite and top Λ := max(Z \ Λ) + 1 if Λ is cofinite.

Theorem (Upper Bound)
We solve the counting version of Λ-Factor in time (top Λ + 1)tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, Λ-#Factor has no (top Λ + 1− ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite set: Similar lower bound

Cofinite set: Improved algorithm but no matching lower bound
21

(ff; ȷ)-DomSet: Our Contribution

Fix two finite or cofinite sets ff; ȷ ⊆ N.

Theorem (Upper Bound)
We solve the counting version of (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, (ff; ȷ)-#DomSet has no (cff;ȷ − ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite sets: Similar lower bound

Cofinite sets: Improved algorithm but no lower bound

22

(ff; ȷ)-DomSet: Our Contribution

Fix two finite or cofinite sets ff; ȷ ⊆ N.

Theorem (Upper Bound)
We solve the counting version of (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, (ff; ȷ)-#DomSet has no (cff;ȷ − ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite sets: Similar lower bound

Cofinite sets: Improved algorithm but no lower bound

22

(ff; ȷ)-DomSet: Our Contribution

Fix two finite or cofinite sets ff; ȷ ⊆ N.

Theorem (Upper Bound)
We solve the counting version of (ff; ȷ)-DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, (ff; ȷ)-#DomSet has no (cff;ȷ − ")tw · poly(|G|) algorithm
for non-poly-time sets even if a tree decomposition of width tw is given.

Decision version:
Finite sets: Similar lower bound

Cofinite sets: Improved algorithm but no lower bound

22

Summary

Problem Deciding

Counting

Λ-Factor
Λ finite tight

tight

Λ cofinite
improved algorithm,
gap remains

Open questions: Close gaps? More general sets? Other parameters?

23

Summary

Problem Deciding

Counting

Λ-Factor
Λ finite tight

tight

Λ cofinite
improved algorithm,
gap remains

(ff; ȷ)-DomSet
ff and ȷ finite tight

tight

ff or ȷ cofinite
improved algorithm,
no lower bound

Open questions: Close gaps? More general sets? Other parameters?

23

Summary

Problem Deciding Counting

Λ-Factor
Λ finite tight

tight
Λ cofinite

improved algorithm,
gap remains

(ff; ȷ)-DomSet
ff and ȷ finite tight

tight
ff or ȷ cofinite

improved algorithm,
no lower bound

Open questions: Close gaps? More general sets? Other parameters?

23

Summary

Problem Deciding Counting

Λ-Factor
Λ finite tight

tight
Λ cofinite

improved algorithm,
gap remains

(ff; ȷ)-DomSet
ff and ȷ finite tight

tight
ff or ȷ cofinite

improved algorithm,
no lower bound

Open questions: Close gaps? More general sets? Other parameters?

23

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

24

Fire Protection Train (FPT) Problem

Task:
Find (few) locations to
position the fire trains
at.

Next:
Formalize and solve
the problem!

Moving Train Stationary Position

FPT is FPTparameterized by treewidth!

24

Appendix

Outline

Representative Sets Convolution Techniques

Generalized Factor Generalized Domination

Variant of the Strong Exponential-Time Hypothesis (SETH)

A1

(ff; ȷ)-DomSet: Structured Pairs

m-structured (ff; ȷ)

For m ≥ 2, (ff; ȷ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈ ȷ we have r ≡ ˛ mod m.

Examples:
ff ȷ m-structured for

{1; 3} {4}

m = 2

{0; 4} {1; 9}

m = 2; 4

{0} {1}

every m ≥ 2

{0; 3} {1; 5}

no m ≥ 2

{d} N

no m ≥ 2

If (ff; ȷ) is m-structured for some m ≥ 2,
we show an improved algorithm.

A2

(ff; ȷ)-DomSet: Structured Pairs

m-structured (ff; ȷ)

For m ≥ 2, (ff; ȷ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈ ȷ we have r ≡ ˛ mod m.

Examples:
ff ȷ m-structured for

{1; 3} {4} m = 2

{0; 4} {1; 9} m = 2; 4

{0} {1} every m ≥ 2

{0; 3} {1; 5} no m ≥ 2

{d} N no m ≥ 2

If (ff; ȷ) is m-structured for some m ≥ 2,
we show an improved algorithm.

A2

(ff; ȷ)-DomSet: Structured Pairs

m-structured (ff; ȷ)

For m ≥ 2, (ff; ȷ) is m-structured if there are ¸ and ˛ such that
for all s ∈ ff we have s ≡ ¸ mod m and for all r ∈ ȷ we have r ≡ ˛ mod m.

Examples:
ff ȷ m-structured for

{1; 3} {4} m = 2

{0; 4} {1; 9} m = 2; 4

{0} {1} every m ≥ 2

{0; 3} {1; 5} no m ≥ 2

{d} N no m ≥ 2

If (ff; ȷ) is m-structured for some m ≥ 2,
we show an improved algorithm.

A2

(ff; ȷ)-DomSet: Our Contribution (Formalized)

Definition for finite or cofinite ff; ȷ ⊆ N

cff;ȷ := topff + top ȷ+ 2 if (ff; ȷ) is not m-structured,

cff;ȷ := max(topff; top ȷ) + 2 if topff = top ȷ is even
and (ff; ȷ) is 2-structured but not m ≥ 3-structured, and

cff;ȷ := max(topff; top ȷ) + 1 otherwise.

Theorem (Upper Bound)
We can solve (ff; ȷ)-#DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, (ff; ȷ)-#DomSet has no (cff;ȷ − ")tw · poly(|G|) algorithm
for non-trivial sets, even if a tree decomposition of width tw is given.

A3

(ff; ȷ)-DomSet: Our Contribution (Formalized)

Definition for finite or cofinite ff; ȷ ⊆ N

cff;ȷ := topff + top ȷ+ 2 if (ff; ȷ) is not m-structured,

cff;ȷ := max(topff; top ȷ) + 2 if topff = top ȷ is even
and (ff; ȷ) is 2-structured but not m ≥ 3-structured, and

cff;ȷ := max(topff; top ȷ) + 1 otherwise.

Theorem (Upper Bound)
We can solve (ff; ȷ)-#DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, (ff; ȷ)-#DomSet has no (cff;ȷ − ")tw · poly(|G|) algorithm
for non-trivial sets, even if a tree decomposition of width tw is given.

A3

(ff; ȷ)-DomSet: Our Contribution (Formalized)

Definition for finite or cofinite ff; ȷ ⊆ N

cff;ȷ := topff + top ȷ+ 2 if (ff; ȷ) is not m-structured,

cff;ȷ := max(topff; top ȷ) + 2 if topff = top ȷ is even
and (ff; ȷ) is 2-structured but not m ≥ 3-structured, and

cff;ȷ := max(topff; top ȷ) + 1 otherwise.

Theorem (Upper Bound)
We can solve (ff; ȷ)-#DomSet in time (cff;ȷ)

tw · poly(|G|)
if a tree decomposition of width tw is given.

Theorem (Lower Bound)
Unless #SETH fails, (ff; ȷ)-#DomSet has no (cff;ȷ − ")tw · poly(|G|) algorithm
for non-trivial sets, even if a tree decomposition of width tw is given.

A3

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}

: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets: Idea

Λ-Factor with Λ = N \ {0; 1024}: 1026tw(G) · poly(|G|) algorithm.

Can we improve this? Are all partial solutions relevant?

Fix a vertex v .

Fix three solutions with degree 0, 256, and 1024 for v , respectively.

A future extension increases the degree of v by f .

One of these three solutions can be combined with f as
{0 + f ; 256 + f ; 1024 + f } ≠ {0; 1024} = N \ Λ.

 |N \ Λ|+ 1 = |{0; 1024}| = 3 solutions suffice instead of 1026!

Idea: Exploit this for a faster algorithm.

A4

Representative Sets

Store only a representative set of the possible partial solutions!
 (|N \ Λ|+ 1)tw solutions suffice instead of (max(N \ Λ) + 2)tw.

Combine this with classical DP.

Theorem
Fix a finite set X ⊆ N. We can solve (N \ X)-Factor in time
(|X|+ 1)4tw · poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026tw to 34tw = 81tw.

We show a similar result for (ff; ȷ)-DomSet.

Note: Incompatible with counting version (“every solution matters”)!

A5

Representative Sets

Store only a representative set of the possible partial solutions!
 (|N \ Λ|+ 1)tw solutions suffice instead of (max(N \ Λ) + 2)tw.

Combine this with classical DP.

Theorem
Fix a finite set X ⊆ N. We can solve (N \ X)-Factor in time
(|X|+ 1)4tw · poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026tw to 34tw = 81tw.

We show a similar result for (ff; ȷ)-DomSet.

Note: Incompatible with counting version (“every solution matters”)!

A5

Representative Sets

Store only a representative set of the possible partial solutions!
 (|N \ Λ|+ 1)tw solutions suffice instead of (max(N \ Λ) + 2)tw.

Combine this with classical DP.

Theorem
Fix a finite set X ⊆ N. We can solve (N \ X)-Factor in time
(|X|+ 1)4tw · poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026tw to 34tw = 81tw.

We show a similar result for (ff; ȷ)-DomSet.

Note: Incompatible with counting version (“every solution matters”)!

A5

Representative Sets

Store only a representative set of the possible partial solutions!
 (|N \ Λ|+ 1)tw solutions suffice instead of (max(N \ Λ) + 2)tw.

Combine this with classical DP.

Theorem
Fix a finite set X ⊆ N. We can solve (N \ X)-Factor in time
(|X|+ 1)4tw · poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026tw to 34tw = 81tw.

We show a similar result for (ff; ȷ)-DomSet.

Note: Incompatible with counting version (“every solution matters”)!

A5

Representative Sets

Store only a representative set of the possible partial solutions!
 (|N \ Λ|+ 1)tw solutions suffice instead of (max(N \ Λ) + 2)tw.

Combine this with classical DP.

Theorem
Fix a finite set X ⊆ N. We can solve (N \ X)-Factor in time
(|X|+ 1)4tw · poly(|G|) if a tree decomposition of width tw is given.

Algorithm improves from 1026tw to 34tw = 81tw.

We show a similar result for (ff; ȷ)-DomSet.

Note: Incompatible with counting version (“every solution matters”)!

A5

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L ∪ R;E) has a half-induced matching of size ‘
if there are a1; : : : ; a‘ ∈ L and b1; : : : ; b‘ ∈ R such that

(ai ; bi) ∈ E for all i , and

(ai ; bj) =∈ E for all i < j .

0 1 2 3

0 1 2 3

Half-induced matching of size 3

A6

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L ∪ R;E) has a half-induced matching of size ‘
if there are a1; : : : ; a‘ ∈ L and b1; : : : ; b‘ ∈ R such that

(ai ; bi) ∈ E for all i , and

(ai ; bj) =∈ E for all i < j .

0 1 23

01 2 3

Half-induced matching of size 3

A6

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L ∪ R;E) has a half-induced matching of size ‘
if there are a1; : : : ; a‘ ∈ L and b1; : : : ; b‘ ∈ R such that

(ai ; bi) ∈ E for all i , and

(ai ; bj) =∈ E for all i < j .

a1 = 0 a3 = 1 2a2 = 3

b3 = 0b1 = 1 b2 = 2 3

Half-induced matching of size 3

A6

Half-Induced Matchings

Definition (Half-Induced Matching)
Graph G = (L ∪ R;E) has a half-induced matching of size ‘
if there are a1; : : : ; a‘ ∈ L and b1; : : : ; b‘ ∈ R such that

(ai ; bi) ∈ E for all i , and

(ai ; bj) =∈ E for all i < j .

a1 = 0 a3 = 1 2a2 = 3

b3 = 0b1 = 1 b2 = 2 3

Half-induced matching of size 3

A6

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

: : :

: : :

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

: : :

: : :

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

: : :

: : :

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

: : :

: : :

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 23 4 56 7

0 1 23 4 567

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Half-Induced Matchings: Application

Consider Λ-Factor with Λ = N \ {0; 3; 6}

Draw edge from i to j if i + j ∈ Λ:

0 1 23 4 56 7

0 1 23 4 567

Our observation:
A larger half-induced matching provides a better lower bound!

A7

Convolution Techniques

Extend algorithm by van Rooij in multiple steps: [van Rooij 2020]

S Cyclic convolution:
Extend existing algorithm by computation of prime numbers

A Normal addition:
Use cyclic convolution and encode checksum by L to detect overflows

L Normal addition with large numbers:
Use cyclic convolution and encode checksum in binary to detect
overflows

T Truncated addition:
Use normal addition and zeta- and Möbius-transform

A8

Lower Bound: Known Hypotheses

Strong Exponential Time Hypothesis (SETH) [IP 2001, CIP 2009]

For all ‹ > 0, there is a k ≥ 3 such that satisfiability of k-CNF formulas on n

variables cannot be solved in time (2− ‹)n.

Constraint Satisfaction Hypothesis (CSPH) [Lampis 2020]

For all B ≥ 2 and " > 0, there exists a q such that q-CSP-B with n variables
cannot be solved in time (B − ")n · nO(1).

Primal Pathwidth SETH (pw-SETH) [Lampis 2025]

For all " > 0, there is no algorithm which takes as input a 3-SAT instance ffi
and a path decomposition of its primal graph of width pw and correctly
decides if ffi is satisfiable in time (2− ")pw · |ffi|O(1).

A9

Lower Bound: New Hypothesis

mono-pw-CSPH
For all B ≥ 2 and " > 0, there exists a q such that no algorithm can,
for a q-CSP-B instance ffi that is given with

a partition V1 ∪̇ V2 of the variables,

a nice path decomposition of the primal graph of ffi of width w

where every bag contains at most O(B · log|V1|) variables from V2,

an injective mapping c from the constraints of ffi to the bags,

the promise that every satisfying multi-assignment that is
consistent on V2 is also consistent on V1,

decide if there is a monotone satisfying multi-assignment that is
consistent on V2 in time (B − ")w · |ffi|O(1).

A10

Lower Bound: High-Level Construction

v2

v1

v3

C1 C2 C3 C4

t21 t41t11

t12 t22 t32

t24

R3

R2R1 R4

A11

Lower Bound: High-Level Construction

v2

v1

v3

C1 C2 C3 C4

t21 t41t11

t12 t22 t32

t24

R R

R

A11

Lower Bound: Realizing Relations

To realize arbitrary relations it suffices to

force a single vertex/edge (of a group) to be selected HW=1 and

ensure that a group of vertices/edges is consistently selected (all or
none) EQ.

HW=1

EQ

EQ

EQ

a

1

2

3

4

5

{4; 5}

{1; 2}

{1; 2; 3; 5}
HW=1

HW=1

HW=1

HW=1

HW=1

A12

Summary (Formalized)

Problem Algorithm Lower Bound

(ff; ȷ)-#DomSet (cff;ȷ)
tw no (cff;ȷ − ")pw

(ff; ȷ)-DomSet
(cff;ȷ)

tw no (cff;ȷ − ")pw ff and ȷ finite

(costff;ȷ)
O(tw) open ff or ȷ cofinite

#AntiFactorx ntw no npw−"

Λ-#Factor no (top Λ + 1− ")pw

Λ-Factor
(top Λ + 1)tw no (top Λ + 1− ")pw Λ finite

no (h − ")pw
Λ cofinite with half-
induced matching of size h

AntiFactorx (x + 1)O(tw) no (x + 1− ")pw x degrees forbidden
A13

More General Sets: From States to Automata

Finite set:

q0 q1 q2 q3

fi = {0; 3}

Cofinite set:

q0 q1 q2 q3

fi = {0; 3; 4; 5; 6; : : : }

Periodic set (residue class):

q0 q1 q2

fi = {0; 3; 6; 9; : : : }

Infinite set (ultimately periodic):

q0 q1 q2 q3 q4

fi = {0; 3; 4; 6; 7; 9; 10; : : : }

Next steps:
Connection to faster algorithms? Efficient convolution techniques?

A14

	Appendix

