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Abstract
Zusammenfassung

The classical O(nm) time algorithms for regular expression pattern matching and mem-
bership can be improved by a factor of about log3/2 n. Instead of focussing on general
patterns we focus on homogeneous patterns of bounded depth in this thesis only. For
them a classification splitting the types in easy (strongly sub-quadratic) and hard (essen-
tially quadratic time under SETH) is known. We take a fine-grained look at the hard pattern
types from this classification and show that few types allow super-poly-logarithmic im-
provements while the algorithms for the other pattern types can only be improved by a
constant number of log-factors, assuming the FORMULA-SAT HYPOTHESIS.

Der klassische O(nm)-Zeit Algorithmus für Pattern-Matching und Membership von reg-
ulären Ausdrücken kann um einen Faktor von log3/2 n verbessert werden. In dieser Arbeit
beschäftigen wir uns allerdings nicht mit allgemeinen Pattern sondern ausschließlich mit
homogenen Pattern. Für diese ist eine Klassifikation in einfache (echt sub-quadratische
Zeit) und schwere Typen (im Grunde quadratische Zeit unter SETH) bekannt. Wir führen
eine fine-grained Analyse für diese harten Pattern-Typen durch und zeigen, dass manche
Typen eine super-poly-logarithmische Laufzeitverbesserung erlauben, währen die an-
deren Typen nur eine Verbesserung um eine konstante Zahl an log-Faktoren zulässt,
vorausgesetzt die FORMULA-SAT HYPOTHESE stimmt.
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Chapter

1
Introduction

1.1 Motivation

REGULAR EXPRESSION PROBLEMS Regular expressions as introduced by Kleene in [Kle56]
are present in many fields of computer science and other sciences. Since only a few
commands or operations are needed (concatenation, alternative and Kleene star), it is
very easy to write them down. But even with these three operations they offer a wide
variety to combine these types to form patterns. Since these patterns consist of operations
applied to other patterns and symbols, they are used in most cases to work on texts,
with text as in the literal sense. They are appropriate to analyse texts pieces by a search
tool or whole files containing certain strings by special dedicated tools such as grep and
egrep for example. But they are also suitable for text manipulation as the unix command
sed shows that searches for a pattern and replaces all occurrences of it by a specified
text. Most programming languages also offer this possibility to perform searches and
replacements based on regular expressions. However, they are not only suitable for text
manipulation but also in biology when considering protein search in DNA sequences
for example [Lan92; NR03]. Or they are used to analyse data networks as described in
[Yu+06; JMR07]. Additionally one can query XML files using regular expressions as shown
in [LM01; Mur01] or they help with human computer interaction [Kin+12]. All of these
fields show that there are plenty of applications for regular expressions and they are not
only an interesting topic in language theory of theoretical computer science. In this thesis
we focus on regular expression pattern matching and membership. While for the first
problem only a substring of the input text has to be matched, the complete string has to
be matched for membership. We give a formal definition of the problems in Section 2.1.

FINE-GRAINED ANALYSIS A natural analysis of algorithms solving a specific problem
involves an analysis of the running time. Using this and the design of faster algorithms
we find upper bounds for the problem. While in “standard” complexity theory a running
time of O(nc ) for some constant c > 0 is considered to be efficient, a running time of
O(n2) still might be too slow for real data if the input size is very large. But despite
on-going research often no major improvement of these bounds was found. Hence,
one tries to prove lower bounds for the problems. Since this is very challenging one
relaxed it to show conditional lower bounds instead (see discussion in Section 2.2.2). For
these conditional bounds one assumes a popular conjecture and shows that under this
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1. INTRODUCTION

assumption the running time of a different problem cannot be improved. If the currently
fastest algorithm has a running time of O((nm)c ), one is usually looking for conditional
lower bounds ruling out algorithms with running time ofO((nm)c−ε) for any ε> 0. 1 These
bounds imply that the algorithm cannot be improved too much, i.e. by a polynomial
factor. But there still might be possibilities to improve the algorithm even further as
the following example shows: The naive algorithm for ORTHOGONAL VECTORS ([CW16;
Wil14a]) runs in time O(n2d) for small dimensions d ∈Θ(log2 n). A reduction from the
SATISFIABILITY PROBLEM (SAT) shows that there is no algorithm with runtime O(n2−ε),
unless SAT has faster algorithms (cf. Hypothesis 1) [BK15]. But in [CW16] an algorithm

with runtime O(n2−1/O(loglogn)) =O(n2/2logn/loglogn) ⊆O(n2/2Θ(
p

logn)) is shown.

The current lower bounds for pattern matching and membership do not rule out such
improvements but rather show that there are no sub-quadratic time algorithms ([BI16;
BGL17]). Let n be the length of some input text and m be the size of the input pattern in the
following. Despite intense research the running time was only improved from the classical
O(nm) approach as shown in [Tho68] first toO(nm/logn+(n+m) logn) by Myers [Mye92]
and then to O(nm polyloglogn/log3/2 n) by Bille and Thorup [BT09]. Whether faster
algorithms exist was still open until a recent result by Abboud and Bringmann [AB18].
They show that under a conjecture for a specialized version of SAT (Hypothesis 2) there
is no algorithm for pattern matching and membership operating in time O(nm/log7 n).
This result is quite astonishing since all previous lower bounds ruled out polynomial
improvements and this results rules out log-factor improvements which is a bound on a
different magnitude.

IDENTIFYING HARD PATTERNS Nevertheless, the result in [AB18] is for general patterns.
This does not rule out that the “simpler” patterns considered in [BI16; BGL17] allow such
improvements. These “simpler” patterns are homogeneous patterns of bounded depth.
For now it suffices to see them as follows: When considering a pattern as tree, then all
operators on the same level have to be equal. The type is the sequence of operators from
the root to the leaf with highest depth and the depth of the pattern is the number of
operators. A formal definition is given in the preliminaries in Section 2.1. From now on
we only use homogeneous patterns of bounded depth unless stated otherwise. To not
consider all possible combinations of operators the following lemma is quite helpful:

Lemma 1.1 (Lemma 1 and Lemma 8 in the full version of [BGL17]). For any type t , ap-
plying any of the following rules yields a type t ′ such that both are equivalent for pattern
matching and membership under linear-time reductions, respectively:

For pattern matching For membership

replace any substring pp, for any p ∈ {◦, |,?,+}, by p

remove prefix + replace any substring +|+ by +|
replace prefix |+ by | replace prefix r? by r+ for any r ∈ {+, |}∗

We say that t simplifies if one of these rules applies. Applying these rules in any order will
eventually lead to an unsimplifiable type.

1A bound of o((nm)c ) would be fabulous.
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1.2. Our Results

Pattern matching ◦? ◦|◦ ◦|+ ◦+◦ ◦+| |◦| |◦+
Membership +|◦| +|◦+ |+|◦

TABLE 1.1: Hard pattern types

While the modifications above simplified the pattern, the following modifications
make the pattern more complicate to show that the hardness of some specific pattern
types implies the hardness of other pattern types.

Lemma 1.2 (Lemma 6 and Lemma 9 in the full version of [BGL17]). For types t and t ′,
there is a linear-time reduction from t-pattern matching/membership to t ′-pattern match-
ing/membership if one of the following sufficient conditions holds:

• t is a prefix of t ′,

• we may obtain t ′ from t by replacing a ? by +?,

• we may obtain t ′ from t by inserting a | at any position,

• only for membership: t starts with ◦ and we may obtain t ′ from t by prepending a +
to t .

By these two lemmas and the previous results showing faster (i.e. almost and (near)
linear time) algorithms for many patterns [KMP77; CH02; AC75; BI16; BGL17] it suffices
to analyse the pattern types in Table 1.1 for the respective problem.

1.2 Our Results

As we have seen, there are five pattern types that are hard for pattern matching and for
membership. For each type T of these five types we show tighter conditional lower bounds
of the form Ω(nm/logcT n) with 20 < cT < 90 based on the FORMULA-PAIR HYPOTHE-
SIS (FPH) as stated in Hypothesis 3. We show the same lower bound for |+|◦-membership
by a similar reduction. We recall from [BT09] that the currently best algorithm for pattern
matching and membership runs in time O(nm polyloglogn/log3/2 n). By this and our
improved bounds we show the following theorem:

Theorem 1.3 (Main Theorem). The currently best algorithm for ◦?, ◦|◦, ◦|+, ◦+◦, and ◦+|-
pattern matching and membership and for |+|◦-membership is optimal up to a constant
number of log-factors, unless FPH is false.

For the two pattern types |◦| and |◦+ we also show tighter bounds. But instead of
giving improved lower bounds we show upper bounds for pattern matching by using the
polynomial method. We show that pattern matching with both types can be solved in time

O(nm/2Θ(
p

logmin(n,m))) when the alphabet is small. This improvement outperforms any
number of log-factors that could be shaved off. Hence, there are no such conditional lower
bounds as for the other pattern types ruling out log-factor improvements. But still the gap

3



1. INTRODUCTION

between O((nm)1−ε) and the running time of these algorithms is not completely closed.
As the polynomial method introduces randomness, these algorithms are randomized
but still err only with small probability. Thus, we also present a derandomization for the
first pattern type that is based on the same ideas as the derandomized algorithms for
ALL-PAIRS SHORTEST PAIRS in [CW16].

We illustrate all of our results in the Figures 6.1, 6.3, 6.2, and 6.4. There we combine the
previous results for specific pattern types with our new results. We also state the results
for the other pattern types that obtain their hardness through Lemma 1.2 and we mark
the patterns that first have to be simplified as mentioned in Lemma 1.1.

While we obtain a full dichotomy for the hard pattern types for pattern matching there
is still some gap for membership. It remains an open question whether there are tighter
lower bounds for patterns of type +|◦| and +|◦+. Likewise an improved algorithm could
not be found yet. In the conclusion we give some ideas why it sounds reasonable to work
on faster algorithms by using the polynomial method. But this has to be addressed in
some further work.

1.3 Structure of the Thesis

In Chapter 2 we first give a formal definition of regular expressions and the pattern
matching and membership problem. Then we introduce the satisfiability problems we
use to reduce from and state the conjectures about their running times before introducing
some already known results used for the reductions and the algorithm design. The faster
algorithms for |◦| and |◦+-pattern matching are given in Chapter 3. In Chapter 4 we
prove the conditional lower bounds for the hard patterns for pattern matching while the
conditional lower bounds for membership are given in Chapter 5. We finally conclude the
thesis in Chapter 6 by giving an overview of the previous results and the ones we showed
in this thesis.

4



Chapter

2
Preliminaries

In the introduction we have already stated the problems we are considering in this thesis
in an informal way. Hence, we give a formal definition of the pattern matching problem
and the membership problem in Section 2.1. But first we define regular expressions and
homogeneous patterns formally. In Section 2.2 we introduce the satisfiability problems
FORMULA-SAT and FORMULA-PAIR. We also show relations between these problems
and the corresponding hypotheses about their lower bounds. As a last part we state in
Section 2.3 several already known techniques and methods which are used in a later part
of the thesis. In the same section we also give a few definitions and notations we use
throughout this thesis. An overview of widely used notation is given in the appendix.

2.1 Regular Expressions

2.1.1 Basic Definitions

Definition 2.1 (Regular Expressions and Languages). Let Σ be a possibly infinite sized
alphabet. We define the class of regular expressions over Σ, REΣ, and the language of words
accepted by a regular expression inductively.

Base
Regular

Expression
Language Name

σ ∈Σ σ ∈REΣ L(σ) := {σ} Symbol

p, q ∈REΣ (p | q) ∈REΣ L(p | q) :=L(p)∪L(q) Alternative

p, q ∈REΣ p ◦q ∈REΣ L(p ◦q) := {tu | t ∈L(p)∧u ∈L(q)} Concatenation

p ∈REΣ p+ ∈REΣ L(p+) :=⋃∞
i=1L(p ◦ . . .◦p︸ ︷︷ ︸

i

) Kleene Plus 1

p ∈REΣ p∗ ∈REΣ L(p∗) := {ε}∪L(p+) Kleene Star
We use ε to denote the empty string consisting of zero symbols.

We extend the definition of the alternative p | q and the concatenation p ◦q in the
natural way to multiple sub-patterns. The symbol for the concatenation is usually omitted
to simplify notation. In the following the size of the alphabet is bounded, strictly speaking

1Stephen Cole Kleene (1909–1994)
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2. PRELIMINARIES

it is constant in most cases. Thus, we assume s := |Σ| if not stated otherwise. We call
regular expressions patterns in the following. We further omit the word “regular” since we
only work with regular expressions and languages in this thesis. To simplify notation we
write Σ∗ for the language accepted by the pattern (σ1 | . . . |σs)∗.

Definition 2.2 (Membership Problem). Let Σ be an alphabet.
Input: A text t ∈Σ∗ and a pattern p ∈REΣ.
Task: Check whether t ∈L(p).

While for the membership problem the whole text must be matched, we mainly focus
on the pattern matching problem. There we want to know whether there is a substring t ′

of t such that t ′ ∈L(p). Thus, we define the matching-language of a pattern p:

Definition 2.3 (Matching Language of a Pattern). M(p) :=Σ∗L(p)Σ∗

The following lemma shows that this definition agrees with our concept from above:

Lemma 2.4. Let t = t1 · · · tn be a text of length n and p be a pattern, both over alphabet Σ.
Then:

t ∈M(p) ⇐⇒ ∃1 ≤ i , i ′ ≤ |n| : ti · · · ti ′ ∈L(p),

with ti · · · ti ′ = ε if i ′ < i .

This leads us to the definition of our main problem:

Definition 2.5 (Pattern Matching Problem). Let Σ be an alphabet.
Input: A text t ∈Σ∗ and a pattern p ∈REΣ.
Task: Check whether t ∈M(p).

2.1.2 Homogeneous Patterns

Analysing general patterns is quite difficult and finding faster algorithms or good lower
bounds is even harder. Hence, we only work with so called homogeneous patterns as
introduced by Backurs and Indyk in [BI16]. These patterns have a regular structure and
are easier to analyse. Although faster algorithms for homogeneous patterns cannot be
generalized for general patterns easily, the lower bounds also hold for the general patterns.

The intuitive definition is that we call a pattern homogeneous if the sub-patterns p
and q as mentioned in Definition 2.1 are of the same type or they are symbols.

Definition 2.6 (Homogeneous Patterns). Treat the patterns as node-labeled trees, where the
root of some subtree (i.e. an inner node) is labeled with the operation of the corresponding
sub-pattern, and the leaves are labeled with symbols from the alphabet.

• Then a pattern is called homogeneous if for each level of the tree, the inner nodes are
labeled with the same operation.

• The type of the pattern is the concatenation of these operations on the path from the
root to the deepest inner node.

6



2.1. Regular Expressions

◦

|

◦

a b c

c

|

a ◦

d c

c |

◦

d b

c ◦

b d

FIGURE 2.1: The parse tree for the pattern (abc | c)(a | dc)c(db | c | bd)

• The depth of a pattern is the depth of the tree, and thus the number of operations of
the type (when collapsing equal operations into one).

We define the class of all homogeneous patterns of type T over alphabet Σ as REΣ(T ).

Example 2.7. The pattern (abc | c)(a | dc)c(db | c | bd) is homogeneous of depth 3 and
has type ◦|◦. See Figure 2.1 for the tree representation of the pattern.

We only consider homogeneous patterns in this thesis. Thus, we assume that patterns
are homogeneous of the given type if not stated otherwise. As mentioned in the intro-
duction it was shown in [BI16; BGL17] that the hardness of the patterns for the pattern
matching problem reduces to pattern types of depth three and one pattern type of depth
two (i.e. ◦?). Thus the depth is usually at most three. For the membership problem also
few patterns of depth four have to be taken into account.

2.1.3 The Size of Patterns

When considering the running time of an algorithm it is important to know the size of the
input. While it is easy to define the size for basic inputs as integers for example (use the
length of the binary encoding of the actual number), it is not that easy for more complex
inputs. Of course one could also use the bit-size of the input, but this is maybe rather
complicated since the algorithm can process several bits at once. Furthermore, this type
of measurement makes the analysis of the algorithm very tedious since every bit action
has to be considered. Thus a good measurement should be defined such that it is still
“close” to the bit-size but should also allow easier analyses of the algorithm.

Definition 2.8 (Size of Patterns). The size of a pattern is defined as the number of nodes
(inner nodes plus leaves) in its parse tree.

One can easily see that this definition only differs from the actual bit size by a factor
of O(logs) since we need these many bits to encode the symbols. To encode the four
operators and the possibility that the pattern is just a symbol we need three additional

7



2. PRELIMINARIES

bits for each node in the tree. But this is constant and thus exceeded by the multiplicative
O(logs) factor.

We assume in the following that the size of the alphabet is constant. This assumption
holds for the reductions in Chapter 4 and is used in the algorithms in Chapter 3. The
application of the polynomial method for the upper bounds also works if the size is super
constant but not too large. While for |◦| we require that the size is rather small, i.e. in

o(2Θ(
p

logn)), we can allow s ∈O(n) for |◦+ and still get a runtime improvement.

2.2 Satisfiability Problems

2.2.1 Definition of the Problems

Instead of using the standard 3-SAT problem where one is given a Boolean formula in
conjunctive normal form with clauses of three literals and one wants to find a satisfying
assignment, we focus on two different satisfiability problems. We do not focus on this
restricted class of formulas but on general formulas that are given as circuits. Such a
formula is a node-labeled tree where each inner node computes a boolean function on
at most two bits and the leaves are labeled with input variables or their negations. This
especially implies that the output of each inner node, we call them gates from now on,
is used only once since the out-degree is 1. The task is to check whether there is an
assignment to the variables such that the formula evaluates to true. The size of a formula
is defined as the number of leaves in the corresponding tree.

In the remaining part of this thesis we solely focus on De Morgan formulas. 2 Thus, a
formula is De Morgan if not stated otherwise. These are formulas as described above but
each inner gate is computing the Boolean AND, OR or NOT. 3 W.l.o.g. we can assume that
no gate computes NOT because we can “push” these negations by De Morgans laws to
the leaves of the formula. By this we still allow a leaf to be labeled with a variable or its
negation. Since the out-degree of each gate is 1, the size of the formula does not change.
We call a De Morgan formula monotone if the leaves are only labeled with variables, i.e.
the negation of a variable is not allowed.

Let B := {true, false} be the set of boolean values from now on. We identify true with 1
and false with 0 if necessary.

Definition 2.9 (FORMULA-SAT ([AB18])).
Input: A (De Morgan) formula F of size s on n variables (also called inputs).
Task: Check whether there is an input in Bn that makes F output true.

A problem closely related to FORMULA-SAT is the FORMULA-PAIR problem, as defined
in Appendix B of the full version of [AB18]. This is the problem we base our reductions for
the lower bounds on.

Definition 2.10 (FORMULA-PAIR).
Input: A monotone De Morgan formula F = F (x1, . . . , xk , y1, . . . , yk ) of size 2k where each

2Augustus De Morgan (1806–1871)
3George Boole (1815–1864)
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input is used exactly once and A,B ⊆Bk of size n and m, respectively.
Task: Check whether there are a ∈ A and b ∈ B such that

F (a,b) = F (a1, . . . , ak ,b1, . . . ,bk ) = true.

The FORMULA-SAT and FORMULA-PAIR are closely related as the following lemma
shows:

Lemma 2.11 (Weak version of Lemma B.2 in the full version of [AB18]). An instance of
FORMULA-SAT on a De Morgan formula of size s over n inputs can be reduced to an instance
of FORMULA-PAIR with two sets of size O(2n/2) and a monotone De Morgan formula of size
k =O(s) in linear time.

Proof Idea. Let F be the formula for FORMULA-SAT on n variables and size s. We define
F ′ to be the same formula as F but each leaf is labeled with a different variable and we
removes the negations from the leaves.

For all half-assignment x to the first half of inputs to F we construct a new half-
assignment ax for F ′ as follows. Let l be a leaf in F with a variable from the first half of
inputs and let l ′ be the corresponding variable/leaf in F ′. We set ax [l ′] = true if and only if
l evaluates to true under x. We also construct the set B analogous for the second half of
inputs of F .

Since F has n inputs this results in 2n/2 assignments for A and B .

2.2.2 Hypotheses

To prove upper bounds for problems it is sufficient to give an algorithm solving the prob-
lem in the stated runtime, even though it is of course not trivial to find these algorithms.
But even for well studied problems like matrix multiplication, only very weak lower bounds
are known. Ran Raz showed a lower bound ofΩ(n2 logn) [Raz02] while the best algorithms
run in time O(n2.38) as shown by Le Gall [Gal14]. To close this gap, one started to show
conditional lower bounds such that under some assumption a better runtime cannot be
achieved. But still these conditional lower bounds do not close the gap completely even
if under these assumptions the gap may closes (up to “small” improvements). Never-
theless these bounds are conditional and may can be disproved, although this is very
unlikely since widely-believed conjectured are used. The most famous conjecture is for
the classical SATISFIABILITY PROBLEM:

Hypothesis 1 (STRONG EXPONENTIAL TIME HYPOTHESIS (SETH) [Wil14a; CIP09; IP01]).
For every δ< 1, there is a k ≥ 3 such that satisfiability of k-CNF formulas on n variables
requires more than O(2δn) time.

See [BK15; Cyg+12; Bri14; AW14] for several examples of conditional lower bounds
based on SETH. Furthermore, in [BI16; BGL17] conditional lower bounds based on SETH
(or more precisely the implied conjecture for ORTHOGONAL VECTORS) for the pattern
matching and membership problem are shown, ruling out faster than quadratic time
algorithms for homogeneous patterns of bounded depth. But in this thesis we do not
base our lower bounds on SETH but on an even stronger hypothesis that characterizes

9
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the FORMULA-SAT problem and hence the FORMULA-PAIR problem. This is the same
assumption as for the lower bounds shown in [Abb+16; AB18] which we use as a basis for
our reductions.

WHY A DIFFERENT ASSUMPTION? For SETH based lower bounds usually an improvement
by polynomial factors is ruled out. But the following hypothesis can be used to rule out
not only these polynomial improvements but also lower order improvements. As already
mentioned we show that the quadratic running time for pattern matching cannot be
improved by more than a constant number of log-factors for several pattern types. This is
a way tighter bound than the ones that are based on SETH.

Hypothesis 2 (FORMULA-SAT HYPOTHESIS (FSH) [AB18]). There is no algorithm that can
solve FORMULA-SAT on De Morgan formulas of size s = n3+Ω(1) in O(2n/nε) time, for some
ε> 0, in the Word-RAM model.

But instead of directly using the FSH for the lower bounds, we define the correspond-
ing hypothesis for FORMULA-PAIR and show that the later one is implied by FSH.

Hypothesis 3 (FORMULA-PAIR HYPOTHESIS (FPH)). For all k ≥ 1, there is no algorithm
that can solve FORMULA-PAIR for a monotone De Morgan formula F of size s and sets
A,B ⊆ Bs/2 of size n and m, respectively, in time O(nmsk /log3k+2 n) in the Word-RAM
model.

Lemma 2.12. FSH implies FPH.

Proof. Assume FSH holds and FPH is false for some fixed k ≥ 1.
Let F be a formula for FORMULA-SAT on N inputs and size s = N 3+1/(4k) ∈ N 3+Ω(1). By

Lemma 2.11 we transform F into a monotone De Morgan formula F ′ of size s′ =O(s) and
two sets with n,m ∈O(2N /2) assignments. We run the algorithm for FORMULA-PAIR now
on this instance:

O
(

n ·m · s′k

log3k+2 n
log1+o(1) 2N

)
⊆O

(
2N /22N /2sk N 1.25

log3k+2 2N /2

)

=O
(

2N N 3k+0.25+1.25

N 3k+2(1/2)3k+2

)

=O
(

2N N 3k+1.5

N 3k+2

)

=O
(

2N

N 0.5

)

But this contradicts the FSH.
The last factor N 1+o(1) comes from the change in the computation model we use. See

the following paragraph for more information. We bounded the o(1) term by 1/4 which
holds for sufficiently large N .
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THE COMPUTATIONAL MODEL Precisely as in [AB18] we use the Word-RAM model as
our computational model. The word size of the machine will be fixed toΘ(log N ) many
bits for input size N . Similar as in the paper we assume several operations that can be
performed in time O(1) (e.g. AND, OR, NOT, addition, multiplication, . . . ).

While this is sufficient for our reductions, we need some more assumptions to state
the FPH as above. There we also need that the operations are robust to a change of the
word size: When considering a model with word size of Θ(loglog N ) bit, we are able to
split the original word intoΘ(log N /loglog N ) chunks of sizeΘ(loglog N ) and to perform
the operations on these smaller chunks. Or to phrase it in the other way as mentioned by
Abboud and Bringmann, we can simulate the operations on words of sizeΘ(log N ) on a
machine with word sizeΘ(loglog N ) in time (log N )1+o(1).

For the above reasoning that FPH is a reasonable assumption we saw that in the
reduction from FORMULA-SAT to FORMULA-PAIR the size of the input increased from N
to n = 2N . To give a faster algorithm for FORMULA-SAT we cannot make use of a machine
that has word size logn = N but we have to use a word size of log N . Thus, we have to
simulate the operation on logn = N bits on a machine with word size loglogn = log N
bits. By this simulation the running time slows down by a factor of (logn)1+o(1) = N 1+o(1).

2.3 Known Results and Definitions

During our reductions and for the algorithm design we make use of several useful facts
and results. We state these (partly well known results) here in a precise way and derive
corollaries which are used in the later reductions.

FAST RECTANGULAR MATRIX MULTIPLICATION While there are many improvements
for the standard matrix multiplication, there is also a result about the multiplication of
rectangular matrices. Coppersmith showed that in special cases these matrices can be
multiplied faster than the standard approach, i.e. in almost quadratic time.

Lemma 2.13 ([Cop82] (cf. Lemma 2.1 in [AWY15])). For all sufficiently large N , the mul-
tiplication of a N ×N 0.172 matrix with a N 0.172 ×N matrix can be done in O(N 2 log2 N )
arithmetic operations.

We can use this result to obtain a fast algorithm to evaluate polynomials on many
inputs. We first show the balanced case of this result and then derive the general case
from it:

Lemma 2.14 (Lemma 2.2 in [AWY15]). Given a polynomial Q(x1, . . . , xd1 , y1, . . . , yd2 ) over
F2 on at most n0.1 monomials. Let A ⊆Bd1 and B ⊆Bd2 consist of n elements each. We can
evaluate Q on all pairs (a,b) ∈ A×B in O(n2 log2 n +n1.1(d1 +d2)) time.

Remark. The additional term n1.1(d1 +d2) comes from the fact that we have to evaluate
each monomial of Q on the values from A and B . Furthermore, the dimensions of A and
B do not have to be equal.

Lemma 2.15 (Fast Polynomial Evaluation). Given a polynomial Q(x1, . . . , xd1 , y1, . . . , yd2 )
over F2 on at most n0.1 monomials. Let A ⊆ Bd1 and B ⊆ Bd2 with n and m ≥ n elements,

11
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respectively. We can evaluate Q on all pairs (a,b) ∈ A×B in O(nm log2 n +n0.1m(d1 +d2))
time.

Proof. We partition B as follows such that |Bi | = n for i ∈ [dm/ne−1] and |Bdm/ne| ≤ n:

B = B1∪̇B2∪̇ . . .∪̇Bdm/ne−1∪̇Bdm/ne

We can fill Bdm/ne with dummy values such that it always has size n, without affecting the
overall running time. Then we can apply Lemma 2.14 with Q and A and for each Bi .

O
(⌈

m

n

⌉(
n2 log2 n +n1.1(d1 +d2)

))
=O

(
m

n

(
n2 log2 n +n1.1(d1 +d2)

))
=O

(
nm log2 n +n0.1m(d1 +d2)

)
Definition 2.16 (Probabilistic Polynomial). Let A and B be domains of values, and P
be a predicate on values from A and B. Furthermore, let ψ : A→ Ba and φ : B → Bb be
functions converting values from A and B to some binary representation with a and b
bits, respectively. Let Q1, . . . ,Qk be Boolean polynomials of degree at most a +b on Boolean
variables α1, . . . ,αa and β1, . . . ,βb . Let q be a Boolean polynomial on k variables and
R1, . . . ,Rk be Boolean random variables.

We define

QR1,...,Rk (α1, . . . ,αa ,β1, . . . ,βb) := q(R1 ·Q1(α1, . . . ,βb), . . . ,Rk ·Qk (α1, . . . ,βb))

and say Q is a probabilistic polynomial that agrees with P with probability at least 2/3 if
the following holds:

∀A ∈A,B ∈B : Pr
r1,...,rk

[
Qr1,...,rk (ψ(A),φ(B)) = JP (A,B)K

]≥ 2/3

We say Q has error probability at most 1/3.

POLYNOMIAL METHOD We use the polynomial method together with the polynomial
evaluation as defined above to show faster algorithms in Chapter 3. While the method
was initially used to prove lower bounds for circuits, it was later adapted by Williams to
improve the running time of algorithms [Wil14b]. The main ideas is the transformation of
an AND gate into a probabilistic polynomial that is correct with a certain probability. The
original idea is due to Razborov [Raz87] and Smolensky [Smo87]:

Definition 2.17. Let t and d be integers. Choose t ·d many random bits ri , j uniformly at
random with i ∈ [t ], j ∈ [d ]. Define

At (y1, . . . , yd ) :=
t∏

i=1

1⊕
d⊕

j=1
ri , j (1⊕ y j )


Lemma 2.18 (Lemma 2.3 in [AWY15]). For every fixed y1, . . . , yd ∈B:

Pr
ri , j

At (y1, . . . , yd ) =
d∧

j=1
y j

≥ 1−1/2t
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DEPTH-REDUCTION TECHNIQUES During the reductions for the lower bound we will
see that the size of the output depends exponentially on the depth of the formula and
polynomially on the size. To avoid this blow-up we make use of the following depth
reduction technique:

Lemma 2.19 (Theorem 4 in [BB94]). Let C be a {∧,∨,¬}-formula of size m. Then for all k ≥
2, there is an equivalent {∧,∨,¬}-formula C ′ of depth d(C ′) ≤ (3k ln2) · logm ≤ 2.08k logm
such that si ze(C ′) ≤ mα, where α= 1+ (1+ log(k −1))−1.

Where the depth of a formula is defined as follows:

Definition 2.20 (Depth of a tree). Let T be a tree with root r . The depth of T is defined as
the length of the longest path from r to any leaf:

d(T ) := max
u: leaf in T

|r →T u|

Hence, every leaf has height 0.
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Chapter

3
Upper Bounds by Faster Algorithms

In this chapter we prove the following theorem by showing two fast algorithms solving the
matching problem for patterns of type |◦| and |◦+ with a super-poly-logarithmic runtime
improvement.

Theorem 3.1 (Faster Algorithms for |◦| and |◦+). Pattern matching on texts of length n
and homogeneous patterns of size m and type |◦| or |◦+ can be solved in time

O

 nm

2
Θ

(p
logmin(n,m)

)


by a randomized algorithm with small error probability.

The improvements of our algorithms are still sub-linear and thus not polynomial in
the input size. This respects the quadratic time lower bounds which are shown for quite
a couple of pattern matching problems, including these two pattern types. See [BI16;
BGL17] for more information and the reductions.

Our result makes use of the polynomial method which was originally used in the
field of circuit complexity. Recently it was applied in algorithm design to give faster algo-
rithms for ALL-PAIRS SHORTEST PAIRS, ORTHOGONAL VECTORS and LONGEST COMMON

SUBSTRING WITH DON’T CARES (see [AWY15; CW16; Wil14b] for further information).
In the following we first give the basic idea behind the algorithm and show the similar

parts for both pattern types. In Section 3.2 we show the more involved part for patterns of
type |◦| while in Section 3.3 we show the corresponding result for patterns of type |◦+.

3.1 General Idea

Recall, that for pattern matching we are given a text t of length n and a pattern p of size
m (cf. Section 2.1.3). We first observe that it is very easy to split patterns of type |◦| and
|◦+ into smaller sub-patterns which can be handled independently from each other. The
general idea of the procedure is as follows:

1. Define a threshold f ∈ 2Θ(
p

logn) depending on the pattern type. 1

1Even though the improvement of the running time depends on the minimum of n and m, this threshold
f only depends on n.
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2. Split the pattern into large sub-patterns matching > f symbols and small sub-
patterns matching ≤ f symbols. These sub-pattern have type ◦| or ◦+.

3. Solve the problem for all large patterns sequentially, i.e. try all large sub-patterns
and the text as a pattern matching instance.

4. For the small sub-patterns do the following:

• Divide the text into pieces of size 2 f .

• Design a circuit checking for a sub-pattern q and a text piece u whether there
is a shift 0 ≤ i < f such that the j th part of the pattern is matched to the i + j th
symbol of the text for all j ∈ [|q|] ⊆ [ f ].

• Transform this circuit into a probabilistic polynomial by the polynomial
method introduced by Razborov and Smolensky [Raz87; Smo87].

• Use the fast polynomial evaluation, based on the matrix multiplications by
Coppersmith, from Lemma 2.15 to evaluate the polynomial on all inputs
and get the required result. (This is possible due to a clever choice of the
parameters.)

5. Repeat this last step, while the text pieces are shifted by f symbols, i.e. the first text
piece starts at the f +1th symbol of the text t and not the first as before.

Remark. We are only interested whether there is some substring that can be matched by
the pattern. We do not ask for all possible substrings that can be matched by the pattern.
Therefore, it only suffices to check whether there is a shift i as mentioned above. We use
the same argument for the proof of Lemma 3.2 below.

If we are interested in finding all possible substring, then we have to change our
algorithm (and circuit) and use a different approach. But then also the analysis of the
running time becomes more involved since the algorithm has to output all substrings.
Since there can be O(n2) many matched substring even for small patterns, this would
change our running time significantly. But see the discussion about the running time in
Chapter 5 in [AC75] for further information.

LARGE SUB-PATTERNS Since the large sub-patterns have to be of a certain size, there
cannot be too many of them. Thus, we can test each sub-pattern against the whole text by
the near-linear time algorithm for ◦| and ◦+-matching.

Lemma 3.2 (Large Sub-Patterns). Given a text t of length n and a pattern p of size m.
Furthermore, let p be of type |◦| or |◦+. If all sub-patterns of p have size at least f and at

most n, then we can check t ∈M(p) in time O
(

f −1nm log2 n
)
.

Proof. From [CH02; BI16] we know that pattern matching of type ◦| and ◦+ can be solved
in time O(n log2 m′+m′) with patterns of size m′. We set mi to be the length of the i th
sub-pattern of p. Hence, m is the sum of the mi ’s plus 1. By assumption there are l ≤ m/ f
many sub-patterns. This gives us an overall running time of:

O
(

l∑
i=1

n log2 mi +mi

)
⊆O

(
l ·n log2 n +m

)
⊆O

(
m

f
n log2 n

)
=O

(
nm log2 n

f

)
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SMALL SUB-PATTERNS While this approach works for large sub-patterns we cannot use
it for the small patterns because there can be too many of them. For these small patterns
we use the polynomial method to check for all small sub-patterns whether they can be
matched to some part of the text.

Lemma 3.3 (Small Sub-Patterns). Given a text t of length n and a pattern p of size m such
that n ≤ 2m/s. Furthermore, let p be of type |◦| or |◦+. If all sub-patterns have size at most

f for f ∈ 2Θ(
p

logn), then we can check whether t ∈M(p) in time O(nm/2Θ(
p

logn)) with
high probability.

Following the ideas above, it actually suffices to prove the following two lemmas. Then
we can combine them with already known results to obtain the previously stated lemma.

Definition 3.4 (Characteristic Vectors). Let Σ= {σ1,σ2, . . . ,σs} be the alphabet with some
(fixed) ordering of the symbols. We define χ :REΣ(|) →Bs as the characteristic function for
patterns of type | (this includes single symbols):

• χ(σi )[i ] := 1 and χ(σi )[ j ] = 0 for i 6= j ∈ [s]

• χ(σi1 |σi2 | . . . |σik )[ j ] = 1 for all j ∈ {i1, i2, . . . , ik } and χ(σi1 |σi2 | . . . |σik )[ j ] = 0 else.

We extend this definition to patterns of type ◦| and thus also “normal” texts in the natural
way by applying χ to every sub-pattern (or symbol).

Lemma 3.5. There is an f and a probabilistic polynomial (cf. Definition 2.16) Q on 3 f s
variables with at most (n/2 f )0.1 monomials. Q agrees with the following property with
probability ≥ 2/3:

u ∈M(p) ⇐⇒ Q(χ(u),χ(q)) = true

Where u is a text piece of length 2 f and q a pattern of type ◦| and size at most f .

For the characteristic vector χ′ used in the following lemma, we do not use a 1-hot
encoding as above but we encode the index of the symbol in binary. A precise definition
is given in the second paragraph of Section 3.3.

Lemma 3.6. Let L := blogmin(n,m +1)c+1. The following exists:

• An f such that we can define t := log(24(L+1) f 2 log(24 f )) ≤ log(24(L+1) f 3),

• A probabilistic polynomial Q on (L+1)t variables with at most (n/2 f )0.1 monomials,

• Functions Th,v,r and Ph,v,r computable in time linear in the input size for v ∈ [t ],
h ∈ [L+1].

Q agrees with the following property with probability ≥ 5/8:

u ∈M(p) ⇐⇒ Q(T (χ′(u)),P (χ′(p))) = true

Where u is a text piece of length 2 f and p is a pattern of type ◦+ and size at most f .

By combining these lemmas with Lemma 2.15 we can prove Lemma 3.3.
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Proof of Lemma 3.3. Let Q be the polynomial and f the threshold from Lemma 3.5 and
Lemma 3.6. Let p1, . . . , pl be the sub-patterns of the given pattern p matching ≤ f symbols
each. Assume n = k2 f + f for some arbitrary k ∈ N. Otherwise, append the text with
fresh symbols not occurring in the pattern. Set n to be the length of the new text (this
only differs by at most 2 f − 1 from the old length). Now split the text t = t1 · · · tn into
ai := ti 2 f −2 f +1 · · · ti 2 f and bi := ti 2 f − f +1 · · · ti 2 f + f for 1 ≤ i ≤ bn/2 f c.

Q has at most (n/2 f )0.1 monomials. We know that we can transform the ai ’s and
pi ’s into two sets V and W of boolean vectors by the functions stated in the lemmas, i.e.
by χ for |◦| and by χ′, T , and P for |◦+. We also repeat the following procedure with the
bi ’s instead of the ai ’s. We remark that |V | = n/2 f and m/s f ≤ |W | ≤ m and hence by
assumption |V | ≤ |W |. Now we apply Lemma 2.15 with the dimensions set appropriately
for each pattern type and get a running time of

O
(

n

2 f
m log2 n

2 f

)
⊆O

nm log2 n

2
Θ

(p
logn

)
⊆O

 nm

2
Θ

(p
logn

)


To reduce the error probability of the polynomial we can use the standard boosting
technique by samplingΘ(logn) many probabilistic polynomials. For each sampled poly-
nomial we check whether all entries are false. Since the polynomial does not produce
false negatives, we continue with the bi ’s in this case. 2 By using a Chernoff bound one
can show that the error is at most polyn−1 (see Section 7.4.1 in [AB09] for details).

Because the pi can match at most f symbols and the texts have length 2 f , we recog-
nize if the pattern matches a text within this text piece. But we also have to check if the
text matched by a pattern is overlapping two ai ’s. Therefore, we shift the text chunks by f
symbols in the second round, i.e. we use the bi ’s instead of the ai ’s.

PUTTING EVERYTHING TOGETHER Using the above lemmas we can show our main theo-
rem of this chapter by giving fast algorithms for the two pattern matching cases:

Proof of Theorem 3.1. Let t be the text of length n and p be the pattern of size m. Choose
f as in the corresponding lemma above according to the type of the pattern, i.e. f ∈
2Θ(

p
logn).

Let p≤ and p> be the partitioning of p depending on the number of symbols/tuples
the sub-patterns can match (i.e. they can match ≤ f or > f symbols/tuples). Let m≤ and
m> be the size of the corresponding patterns. We handle both patterns independently
from each other:

p> We first observe that we can ignore all sub-patterns of p> with size >O(n) since this
means that more than n symbols have to be matched which is not possible. We
apply Lemma 3.2 to solve the problem in the following time:

O
(

nm> log2 n

f

)
2This follows from the definition of the polynomial At in Definition 2.17.
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p≤ We distinguish between the case n ≤ 2m≤/s and n > 2m≤/s.

n ≤ 2m≤/s We directly apply Lemma 3.3 and get a running time of

O

 nm≤

2
Θ

(p
logn

)


n > 2m≤/s We partition the text into sn/2m≤ pieces of size n′ = 2m≤/s and pad
the text with fresh symbols if 2m≤/s does not divide n. In a second run we
shift the text pieces by m≤/s symbols, similarly as in the proof of Lemma 3.3.
We use the algorithm from that lemma to get a total running time of

O

 sn

2m≤
· n′ ·m≤

2
Θ

(p
logn′

)
=O

 nm≤

2
Θ

(p
logm≤

)


for this case. Note that this is an improvement not depending on n but on m.

By these case distinctions we get an overall running time of

O
(

nm

2Θ(
p

logmin(n,m))

)
where we assumed in all steps that the size of the alphabet is constant.

Remark. The improvement in Theorem 3.1 is not depending on n but on the minimum of
n and m. Why this is still satisfying, can be seen by the following observation: Assume
we have a large text and a small pattern of possibly constant size. If the algorithm would
have an improvement only depending on n, we could achieve a sub-linear time algorithm.
But this is not possible since we have to read the input at least once and thus we have
a linear lower bound. The analogous argument hold for the other direction. Hence, the
improvement must depend on the smaller of the two parameters specifying the input
size.

Now it remains to prove Lemma 3.5 and 3.6. We show each of them in a separate
section in the following.

3.2 Small Patterns of Type |◦|
Let u = u1 · · ·u2 f be a text piece and q = q1 · · ·q f be a pattern of size f and type ◦|. Recall,
we assume the size of the alphabet Σ is constant and thus the size of each qi is in O(1).

3.2.1 The Circuit

MATCHING SYMBOLS The following definition of the circuit C∈ on 2s inputs satisfies the
following property for all symbols a and patterns r of type |

C∈(χ(a),χ(r )) :=
s∨

k=1
χ(a)[k]χ(r )[k]

C∈(χ(a),χ(r )) = 1 ⇐⇒ a ∈L(r )
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3. UPPER BOUNDS BY FASTER ALGORITHMS

The correctness of the circuit follows immediately by its construction and the definition
of χ, Definition 3.4.

MATCHING WORDS Recall, that the function χ was not only defined for patterns of type |
but it can easily be extended to patterns of type ◦| and thus texts of arbitrary size and
length, respectively.

To check whether q matches u, we have to check whether there is a shift i of u such
that the first alternative of the pattern matches the i +1th symbol of the text. Then we
check for the following f −1 symbols whether they match. This leads us to the definition
of the circuit CM :

CM (χ(u),χ(q)) :=
f −1∨
i=0

f∧
j=1

C∈(χ(ui+ j ),χ(q j )) =
f −1∨
i=0

f∧
j=1

s∨
k=1

χ(ui+ j )[k]χ(q j )[k]

3.2.2 The Polynomial

DEFINITION To obtain a polynomial over F2 we have to replace the AND and OR by
products and binary additions (i.e. addition modulo 2). For this we first notice that at
most one product in C∈ is true for all valid inputs. This is because we used one bit for each
symbol and the characteristic vector of a text symbol contains exactly one 1. Therefore,
we can replace the OR by an XOR:

C ′
∈(χ(a),χ(r )) :=

s⊕
k=1

χ(a)[k]χ(r )[k] ≡C∈(χ(a),χ(r ))

By De Morgans laws we replace the outer OR in CM by a NOT-AND-NOT and transform
all ¬φ into 1⊕φ for any formula φ.

CM (u, q) ≡ 1⊕
f −1∧
i=0

1⊕
f∧

j=1

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]


Now we replace the outer AND by a polynomial A2 as defined in Definition 2.17 (using
the results from Razborov and Smolensky [Raz87; Smo87]):

1⊕
2∏

i ′=1

1⊕
f −1⊕
i=0

ri ′,i

1⊕1⊕
f∧

j=1

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]




=1⊕
2∏

i ′=1

1⊕
f −1⊕
i=0

ri ′,i

f∧
j=1

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]


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3.2. Small Patterns of Type |◦|

Finally we replace the inner AND by 2 f probabilistic polynomials A3log f :

1⊕
2∏

i ′=1
1⊕

f −1⊕
i=0

ri ′,i

3log f∏
j ′=1

1⊕
f⊕

j=1
ri ′,i , j ′, j

(
1⊕

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]

)

=1⊕
2∏

i ′=1
1⊕

f −1⊕
i=0

ri ′,i

3log f∏
j ′=1

1⊕
 f⊕

j=1
ri ′,i , j ′, j ·1


︸ ︷︷ ︸

=:ri ′ ,i , j ′∈{0,1} (∗)

⊕
f⊕

j=1

(
ri ′,i , j ′, j

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]

)


=1⊕
2∏

i ′=1
1⊕

f −1⊕
i=0

ri ′,i

3log f∏
j ′=1

ri ′,i , j ′ ⊕
f⊕

j=1

(
ri ′,i , j ′, j

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]

)=: Qr (u, q)

Whether (∗) is equal to 0 or 1 only depends on the choice of the random bits. We can
see the sum as some value ri ′,i , j ′ that is specific for each i ′, i , j ′ and depends only on the
corresponding bits ri ′,i , j ′, j .

ERROR BOUND According to Definition 2.16 we want to show that for every input (u, q)
the polynomial Qr agrees with CM with probability ≥ 2/3 or that the error probability is
bounded by 1/3. From Lemma 2.18 we know that the outer polynomial A2 is wrong with
probability at most 1/22 = 1/4. Each of the inner A3log f is wrong with probability at most
1/23log f = 1/ f 3. This gives an overall error probability of ≤ 1/4+2 f / f 3. One can easily
check that this is smaller than 1/3 for f ≥ 5.

3.2.3 Counting the Monomials

it remains to bound the number of monomials of Qr . For this we convert Qr into sums of
products by flipping the order of the operations.

FIRST FLIP We first flip the inner most sum and the middle product.

B Claim 3.2.1. For all i ′, i :

3log f∏
j ′=1

ri ′,i , j ′ ⊕
f⊕

j=1

(
ri ′,i , j ′, j

s⊕
k=1

χ(ui+ j )[k]χ(q j )[k]

)

has < 2
( f +1

3log f

)
s3log f monomials for s≥ 2.

Proof. The main idea is to make use of the distributivity law. To keep the number of
monomials small we use the same facts and ideas as in [AWY15]:

1. x2 = x in F2

2. 3log f ≤ ( f +1)/2 for sufficiently large f

3. Each of the 3log f sums is the sum of elements from {1,γ1, . . . ,γ f } with

γ j :=
s⊕

k=1
χ(ui+ j )[k]χ(q j )[k]
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3. UPPER BOUNDS BY FASTER ALGORITHMS

Let us first treat the γ j as variables in the following. Then, when applying the distribu-

tivity law, the number of monomials is bounded by
∑3log f

w=1

( f +1
w

)
. This is because when

expanding the product we have one summand for each j ′. But these summands are from
the set defined above and when we have the same summands (and thus factors) for two
j ′s they reduce to one because we are in the binary setting (observation 1). By this we can
use the number of subsets from {1,γ1, . . . ,γ f } of size at most 3log f since there can be at
most that many factors in each product.

But since the γ j are no variables, we have to expand them, too. For each subset of size
w , there are at most w many γ j ’s in each monomial. Since each γ j has s summands, this
results in at most sw monomials for each monomial consisting of w many γ j ’s. Thus, the
number of monomials is bounded by

3log f∑
w=1

(
f +1

w

)
sw ≤

3log f∑
w=1

(
f +1

3log f

)
sw ≤

(
f +1

3log f

)
s
s3log f −1

s−1
≤ 2

(
f +1

3log f

)
s3log f −1

for sufficiently large f and observation 2.

SECOND FLIP We observe that the initial “1⊕” can be ignored because we can interpret
an output of 0 as true and 1 as false.

B Claim 3.2.2. Let Pi ′,i be polynomials, each consisting of at most k monomials. Then,

2∏
i ′=1

1⊕
f −1⊕
i=0

ri ′,i Pi ′,i

has ≤ ( f k +1)2 monomials.

Proof. By applying the distributivity law we get the claimed bound.

The final polynomial has at most M =
(
2 f

( f +1
3log f

)
s3log f

)
2 monomials by the two claims

above.

BOUNDING THE NUMBER OF MONOMIALS It remains to show that M is smaller than
(n/2 f )0.1. For this we set f := 2

p
1/20·logn/(2+3logs) −1, i.e. f = 2Θ(

p
logn) when s is constant.

M ≤ (n/2 f )0.1 ⇐⇒
p

M ≤ (n/2 f )1/20

⇐ 2 f

(
f +1

3log f

)
s3log f ≤ (n/2 f )1/20

⇐⇒ 1+ log f + log

(
f +1

3log f

)
+3log f logs≤ 1/20 · (logn − log(2 f ))

⇐⇒ Γ := 1+ log f + log

(
f +1

3log f

)
+3log f logs+1/20 · log(2 f ) ≤ 1/20 · logn
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3.3. Small Patterns of Type |◦+

We show the last inequality:

Γ= 1+ log f + log

(
f +1

3log f

)
+3log f logs+ log(2 f )

20
·

≤ log( f +1)+3log f log( f +1)+3log( f +1)logs+ log f

≤ (2+3logs) log( f +1)+3log2( f +1)

≤ (2+3logs)

√
1

20 · logn

2+3logs
+3

1
20 · logn

(2+3logs)2

≤
√

1

20
· logn + 1

2

1

20
· logn

≤ 1

20
logn

For the first inequality we used that 1+ log(2 f )
20 ≤ log f and

(a
b

)≤ ab . These two and all other
bounds hold for sufficiently large n and thus f .

�

Remark. We still get the same asymptotic bound if s is not constant but also not to large.

Strictly speaking, we require s ∈ o(2Θ(
p

logn)) for the proof to work. For larger sizes the
improvement cannot be achieved by this method anymore.

3.3 Small Patterns of Type |◦+
3.3.1 Encoding Texts and Patterns

PARTIAL INEQUALITIES Recall the definitions of the size of patterns in Section 2.1.3.
But instead of using this definition for patterns of type ◦+3 and hence |◦+, we define a
compressed version of the patterns. By this the size of the patterns does not increase but
may decreases and the information stays the same. Thus, we have an alternative way of
representing the pattern.

We do this by merging consecutive sub-patterns of type + over the same symbol
together. We know that a single symbol matches exactly one symbol while a Kleene Plus
matches at least one symbol. Thus, we can sum these minimal numbers of repetitions
that a symbol has to be matched. By this we represent patterns of type ◦+ as lists of tuples
with a symbol and a partial inequality.

Example 3.7. A pattern such as aaa+b+bc requires that ≥ 3 symbols a, then ≥ 2 symbols
b, and finally = 1 symbol c are matched. We represent this by the following tuple sequence
(a,3 ≤)(b,1 ≤)(c,1 =).

Definition 3.8 (Partial Inequality). Let� ∈ {≥,=,≤}. We define a partial inequality c� to
be a function f :N→Bwith n 7→ Jc�nK.

3The same procedure can be applied directly to patterns of type ◦?.
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3. UPPER BOUNDS BY FASTER ALGORITHMS

Since texts can be seen as patterns of type ◦ and hence ◦+, we can use the same
compression but replacing a partial inequalities of the form c = by the integer c . Using this
compression, we can reformulate the membership problem: A text t = (σ1, l1) · · · (σk , ln)
is matched by a pattern p = (τ1,k1) · · · (τk ,kn) if and only if σi = τi and ki (li ) = true for all
i ∈ [n]. Now it remains to show how the compression of the patterns and the texts can be
encoded.

ENCODING TEXTS AND PATTERNS We identify the symbols with their index in Σ. To
encode the indices in binary we need blogsc+1 bits. Later we require that every binary
encoding has at least one 1 and thus we cannot use index 0. Hence, we need S := blog(s+
1)c+1 bits for this encoding.

We first find an upper bound for the number encoding the repetitions in the tuples
of the text and the pattern. Recall, that every pattern of type |◦+ with size m has ≤ m
leaves. Thus, it can match at most m symbols when not considering the +. So, every
number that could appear in a partial equation is m at most. Now consider a text tuple
(σ, l ) with l > m. By the above observation this text has to make use of at least one + in
the pattern, otherwise it could not be matched. But all of the l −m repetitions of the latter
can be mapped to this specific +. Thus, we can reduce every number strictly larger than
m to m +1. We also observe that the number can never be larger than n, where n is the
length of the text. Because if a pattern has to match > n repetitions of the same symbols, it
requires a string longer than the text and thus it can be ignored. Therefore, we can use the
minimum of n and m+1 as a bound for the number in the tuple. By the same observation
we can assume that all sub-patterns of type ◦+ match at most n tuples and symbols. Thus,
we need L = blogmin(n,m +1)c+1 bits for this.

To encode the type of the partial equation c� it suffices to consider the case� ∈ {≤,=}.
We use a single bit e for this that is set to 0 for equality and to 1 for inequalities. To simplify
notation we will treat e as an additional bit for the binary encoding of the number of
repetitions at some point in the proof. Even though the text tuple does not encode a
partial inequality, we also add this bit. Later we see why we set it to 1 for all tuples.

By these observations we encode each tuple of the text and the pattern by S +1+L
bits.

Remark. We can also apply this type of compression when the sub-patterns of the Kleene
Plus or Star are more complex. But in these cases it is not very likely that the sub-patterns
are repeated in the concatenation more than once. Furthermore, since we are working
with homogeneous patterns, these patterns are in general not be homogeneous anymore
and can therefore not occur in our setting.

Let u = u1 · · ·u2 f be a text piece and q = q1 · · ·q f be the pattern of size f and type ◦+
after the above compression in the following.

3.3.2 The Circuit

MATCHING TUPLES Let v = (σ, l ) be a text tuple and r = (d ,τ,e, l ′) be a pattern tuple
in the following. Where the bit d is a new don’t-care bit. We use it when the number of
pattern tuples is not as large as the circuit we defined it for. Then we add new tuples with
all bits set to 0 except for the bit d which is set to 1.
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3.3. Small Patterns of Type |◦+

We define the circuit C∈((σ, l ), (d ,τ,e, l ′)) such that it outputs true if one of the follow-
ing conditions holds and false otherwise:

1. d = 1

2. σ= τ, and l = l ′ if e = 0 and l ≥ l ′ if e = 1

We get:

C∈((σ, l ), (d ,τ,e, l ′)) = d ∨ (Jσ= τK∧ (e ∨ Jl = l ′K)∧ (¬e ∨ Jl ≥ l ′K))

=d ∨ (Jσ= τK∧ (Jl = l ′K∨ (e ∧ Jl > l ′K)))

=d ⊕
(

S∧
h=1

1⊕〈σ〉h ⊕〈τ〉h∧ L∧
k=1

1⊕〈l〉k ⊕〈l ′〉k ∨
(

e ∧
L∨

k=1
(1⊕〈l ′〉k )∧〈l〉k ∧

L∧
k ′=k+1

1⊕〈l〉k ′ ⊕〈l ′〉k ′

)


The d⊕ can be used since we have set all other bits to 0 if d = 1. Then we also know that
there is exactly one h ∈ [S] such that 〈σ〉h = 1. Then the first AND of the right hand side of
the outer XOR evaluates to false since all pattern bits are 0 by assumption.

To bring this equation into a nicer form, we treat bit e as the most significant bit of the
number l ′. Likewise we can add this additional bit to the encoding of l and set it there to
1, as already mentioned above. We refer to the bit by 〈l ′〉L+1 and likewise for l . Now we
rewrite the OR such that it changes to a OR of L+1 ANDs of L+2 XORs of three variables.

B Claim 3.3.1. There are γh,k ,αh,k ,βh,k ∈B, and ih,k ∈ [L+1] such that

C∈((σ, l ), (d ,τ,e, l ′)) = d ⊕
(

S∧
h=1

1⊕〈σ〉h ⊕〈τ〉h ∧
L+1∨
h=1

L+2∧
k=1

γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k

)

Proof. This proof is inspired by the procedure from Chapter 5 in [BK]. It obviously suffices
to show that these γh,k ,αh,k ,βh,k ∈B, and ih,k ∈ [L+1] exist such that(

L∧
k=1

1⊕〈l〉k ⊕〈l ′〉k

)
∨

(
e ∧

L∨
h=1

(1⊕〈l ′〉h)∧〈l〉h ∧
L∧

k=h+1
1⊕〈l〉k ⊕〈l ′〉k

)

=
L+1∨
h=1

L+2∧
k=1

γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k

We first observe that the left side of the outer OR is a special case of the AND of the right
side. Hence, we are going to merge these cases in a later step together. But we first modify
the right side by moving the e into the OR and see it, as described above, as L+1th bit of
the input. Then we change the right side by making the 1⊕〈l ′〉h a part of the AND:

L∨
h=1

(1⊕〈l ′〉h)∧〈l〉h ∧
L+1∧

k=h+1
1⊕〈l〉k ⊕〈l ′〉k =

L∨
h=1

〈l〉h ∧
L+1∧
k=h

γh,k ⊕〈l〉αh,k

k ⊕〈l ′〉βh,k

k
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Where we set:

γh,k =αh,k =βh,k =1 ∀h ∈ [L],h < k ∈ [L+1]

γh,h =1 ∀h ∈ [L]

αh,h =0 ∀h ∈ [L]

βh,h =1 ∀h ∈ [L]

Now we extend the AND by a L+2th term such that we only have an OR of an AND:

L∨
h=1

〈l〉h ∧
L+1∧
k=h

γh,k ⊕〈l〉αh,k

k ⊕〈l ′〉βh,k

k =
L∨

h=1

L+2∧
k=h

γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k

We define the ih,k as follows and extend the αh,k ,βh,k , and γh,k :

ih,k =k ∀h ∈ [L],h ≤ k ∈ [L+1]

ih,L+2 =h ∀h ∈ [L]

γh,L+2 =0 ∀h ∈ [L]

αh,L+2 =1 ∀h ∈ [L]

βh,L+2 =0 ∀h ∈ [L]

By setting γh,k = 1, αh,k = βh,k = 0 for all k < h ∈ [L] we can generalize the inner OR.
Furthermore, we add the left part of the original OR as the L+1th term of the outer OR:(

L∧
k=1

1⊕〈l〉k ⊕〈l ′〉k

)
∨

(
L∨

h=1

L+2∧
k=1

γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k

)
=

L+1∨
h=1

L+2∧
k=1

γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k

We extend the definition of the values as follows:

iL+1,k =k ∀k ∈ [L]

γL+1,k =1 ∀k ∈ [L+2]

αL+1,k =1 ∀k ∈ [L]

αL+1,L+1 =αL+1,L+2 =0

βL+1,k =1 ∀k ∈ [L]

βL+1,L+1 =βL+1,L+2 =0

These values only depend on L and can thus be precomputed as soon as L is known.

To simplify the circuit even further we combine the inner AND with the comparison
of σ and τ and add S more constraints to the inner AND.

B Claim 3.3.2. We can extend the γh,k ,αh,k ,βh,k ∈B, and ih,k ∈ [L+1] from the previous
claim and there are δh,k ∈B and jh,k ∈ [S] such that:

C∈((σ, l ), (d ,τ,e, l ′)) = d ⊕
L+1∨
h=1

L+2+S∧
k=1

γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k
⊕〈σ〉δh,k

jh,k
⊕〈τ〉δh,k

jh,k
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Proof. We set the values to the following:

γh,L+2+k =1 ∀h ∈ [L+1],k ∈ [S]

αh,L+2+k =0 ∀h ∈ [L+1],k ∈ [S]

βh,L+2+k =0 ∀h ∈ [L+1],k ∈ [S]

δh,L+2+k =1 ∀h ∈ [L+1],k ∈ [S]

δh,k =0 ∀h ∈ [L+1],k ∈ [L+2]

jh,L+2+k =k ∀h ∈ [L+1],k ∈ [S]

The value of ih,k for all h ∈ [L+1] and k ∈ [L+3,L+2+S] can be chosen arbitrarily since
the term vanishes since αh,k =βh,k = 0. The analog holds for jh,k with k < L+3.

By this we can later group the parts involving (σ, l ) and (d ,τ,e, l ′) together to reduce
the complexity of the circuit. Since at most one AND can be true at any time, we can
replace the OR by an XOR. To simplify notation we define

C∈((σ, l ), (d ,τ,e, l ′)) =:d ⊕
L+1⊕
h=1

Dh(σ, l ,τ,e, l ′)

Where:

Dh(σ, l ,τ,e, l ′) :=
L+2+S∧

k=1
γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k
⊕〈σ〉δh,k

jh,k
⊕〈τ〉δh,k

jh,k

MATCHING WORDS We extend the above circuit to texts and patterns of non trivial size.
As for the |◦|-matching, we define the following circuit to test whether there is a shift i
such that ui+1 is matched by q1 and likewise for the following f −1 tuples:

CM (u, q) :=
f −1∨
i=0

f∧
j=1

C∈((σi+ j , li+ j ), (d j ,τ j ,e j , l ′j )) =
f −1∨
i=0

f∧
j=1

d j ⊕
L+1⊕
h=1

Dh(σi+ j , li+ j ,τ j ,e j , l ′j )

Using De Morgans laws we transform the outer OR into a NOT-AND-NOT and replace
NOTs by 1⊕. The outer 1⊕ can be omitted since we can swap the result at any point of
time during the further calculations. Thus, the circuit changes to

CM (u, q) ≡
f −1∧
i=0

1⊕
f∧

j=1
d j ⊕

L+1⊕
h=1

Dh(σi+ j , li+ j ,τ j ,e j , l ′j )

3.3.3 The Polynomial

DEFINITION As in the previous section, we make use of the result due to Razborov and
Smolensky as shown in Lemma 2.18 to transform this circuit into a polynomial over F2.
We first transform the function Dh into a probabilistic polynomial Dh,r by replacing the
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AND-gate by At as defined in Definition 2.17 with t to be chosen later.

Dh,r :=
t∏

v=1
1⊕

L+2+S⊕
k=1

rh,v,k

(
1⊕γh,k ⊕〈l〉αh,k

ih,k
⊕〈l ′〉βh,k

ih,k
⊕〈σ〉δh,k

jh,k
⊕〈τ〉δh,k

jh,k

)
=

t∏
v=1

Th,v,r (σ, l )⊕Ph,v,r (τ,e, l ′)

=
⊕
z∈Bt

t∏
v=1

Th,v,r (σ, l )zv Ph,v,r (τ,e, l ′)1−zv

Where we define:

Th,v,r (σ, l ) :=
L+2+S⊕

k=1
rh,v,k

(
1⊕γh,k ⊕〈l〉αh,k

ih,k
⊕〈σ〉δh,k

jh,k

)
⊕1

Ph,v,r (τ,e, l ′) :=
L+2+S⊕

k=1
rh,v,k

(
〈l ′〉βh,k

ih,k
⊕〈τ〉δh,k

jh,k

)
We remark that e is treated as part of 〈l ′〉 in the formula. For fixed r , (σ, l ), and (τ,e, l ′) we
can see the T ’s and P ’s as variables indexed by h and v . This is because the definition
of the γ,α,β, and δ only depends on the number of bits (i.e. L and S) and can thus be
precomputed.

By the change from Dh to Dh,r the polynomial has the following form:

f −1∧
i=0

1⊕
f∧

j=1
d j ⊕

L+1⊕
h=1

⊕
z∈Bt

Xi , j ,h,z

Where we defined Xi , j ,h,z :=∏t
v=1 Th,v,r (σi+ j , li+ j )zv Ph,v,r (τ j ,e j , l ′j )1−zv . For now, we see

these values as monomials in the T ’s and P ’s. This is reasonable since the Xi , j ,h,z are
products of T ’s and P ’s.

Finally, we replace the two outer ANDs by probabilistic polynomials A3 and At ′ , where
t ′ is chosen later.

3∏
i ′=1

1⊕
f −1⊕
i=0

ri ′,i

 t ′∏
j ′=1

1⊕
f⊕

j=1
ri ′,i , j ′, j

(
1⊕d j ⊕

L+1⊕
h=1

⊕
z∈Bt

Xi , j ,h,z

)

=
3∏

i ′=1
1⊕

f −1⊕
i=0

ri ′,i


t ′∏

j ′=1
1⊕

f⊕
j=1

ri ′,i , j ′, j︸ ︷︷ ︸
ri ′ ,i , j ′ :=

⊕
f⊕

j=1
ri ′,i , j ′, j

(
d j ⊕

L+1⊕
h=1

⊕
z∈Bt

Xi , j ,h,z

)


=
3∏

i ′=1
1⊕

f −1⊕
i=0

ri ′,i

 t ′∏
j ′=1

ri ′,i , j ′ ⊕
f⊕

j=1
ri ′,i , j ′, j

(
d j ⊕

L+1⊕
h=1

⊕
z∈Bt

Xi , j ,h,z

)
=:Qr (u, q)
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3.3. Small Patterns of Type |◦+

ERROR BOUND We show that Qr agrees with CM with probability at least 5/8 and thus
has error probability at most 3/8. Even though this error is larger than 1/3 it does not
affect the success probability of our algorithm since the standard boosting technique still
applies. We choose t := log(24(L+1) f 2 log(24 f )), and t ′ := log(24 f ). From Lemma 2.18 we
know that the outer polynomial errs with probability at most 1/23. The middle one with
probability at most 1/2t ′ , but it is used 3 f times. The inner one is used 3 f t ′ f (L+1) times
with error of at most 1/2t . Using the union bound, we get a total error probability of at
most

1

8
+ 3 f

2t ′
+ 3 f t ′ f (L+1)

2t = 1

8
+ 3 f

24 f
+ 3 f log(24 f ) f (L+1)

24(L+1) f 2 log(24 f )
≤ 3/8

3.3.4 Counting the Monomials

To count the number of monomials of Qr we convert it to a polynomial that is a sum
(XOR) of products. Therefore, we have to change the order of the quantifiers.

FIRST FLIP Change the order of the inner sums with the inner product: Similar as for
|◦| we count the number of subsets from {1,η1, . . . ,η f } with η j = d j ⊕

⊕L+1
h=1

⊕
z∈Bt Xi , j ,h,z .

But we only consider subsets of size at most t ′. This gives us a total number of
∑t ′

w=1

( f +1
w

)
monomials with η j as variables and degree t ′. Since each η j is a sum of (L+1)2t +1 many
monomials, the final number of monomials in this inner product is

t ′∑
w=1

(
f +1

w

)
((L+1)2t +1)w .

SECOND FLIP Applying the distributivity law for the outer product we get that Qr has at
most ( f

∑t ′
w=1

( f +1
w

)
((L +1)2t +1)w +1)3 monomials of degree at most 3t ′ in the X ’s and

thus of 3t ′t in the T ’s and P ’s. By bounding the sum the number of monomials is at most
M := (2 f

( f +1
t ′

)
((L+1)2t +1)t ′)3.

BOUNDING THE NUMBER OF MONOMIALS Recall, we defined t ′ = log(24 f ) and t ≤
log(24(L +1) f 3). We prove M ≤ (n/2 f )0.1 which is equivalent to show 3

p
M ≤ (n/2 f )1/30.

This holds if Γ := log( 3
p

M)+1/30 · log(2 f ) ≤ 1/30 · logn:

Γ≤1+ log f + log

(
f +1

t ′

)
+ t ′ log

(
(L+1)2t +1

)
+1/30 · log(2 f )

≤2log f + t ′ log( f +1)+ t ′ log
(
(L+1)24(L+1) f 3 +1

)
≤2log f + log(24 f ) log( f +1)+ log(24 f ) log

(
24(L+1)2 f 3 +1

)
≤ log(24 f )

(
2+ log( f +1)+ log

(
24(L+1)2 f 3 +1

))
≤2log2

(
24(L+1)2 f 3 +1

)
When setting f as follows we get Γ ≤ 1/30 · logn and thus the claimed bound holds.

Additionally, f ∈ 2Θ(
p

logn)/L2/3 and hence f ∈ 2Θ(
p

logn) since L ∈O(logn).

f := 3

√√√√2
p

1/60·logn −1

24(L+1)2
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3. UPPER BOUNDS BY FASTER ALGORITHMS

Remark. We observe that the size of the alphabet s does not occur in this final compu-
tation. This is due to the fact, that we used the Th,q,r and Ph,q,r to preprocess our input
data. Thus, s only affects the dimensions for our polynomial evaluation. For this still to
work we need d1 +d2 ∈O(n0.9) as one can see in Lemma 2.15. But since the dimensions
are poly-logarithmic in n, m, and s the method works for any s ∈O(n).

�

3.4 Derandomizing the Algorithm for |◦|
DERANDOMIZATIONS In the last sections we have seen randomized algorithms to solve
the pattern matching problem for patterns of type |◦| and |◦+. These algorithms and
constructions are, as already mentioned, inspired by the method of Williams, who showed
the first super-logarithmic improvement for ALL-PAIRS SHORTEST PAIRS in [Wil14b]. Both
of our algorithms are randomized and therefore only correct with high probability. Even
though Williams showed a derandomization in the original paper, this deterministic
algorithm has a worse running time than the randomized approach. It took a few year
until Chan and Williams [CW16] showed that the problem can be solved deterministically
and hence without an error in the asymptotically same time as for the randomized case.
They made use of so called small-bias sets and modulus-amplifying polynomials. We use
these techniques to present a deterministic version of the algorithm for |◦|-matching. This
derandomization is based on the fact that one can simulate the SUM of ORs by a small
polynomial (for a sufficient definition of small). We use this polynomial to simulate that
part of our circuit that was converted into a probabilistic polynomial by the method of
Razborov and Smolensky.

Definition 3.9 (SUM-OR (cf. Section 2 in [CW16])). Let d1 and d2 be positive integers.
Define the function SUM-ORd1,d2

:Bd1·d2 → {0, . . . ,d1} as follows:

SUM-ORd1,d2 (x1,1, . . . , x1,d2 , . . . . . . , xd1,1, . . . , xd1,d2 ) :=
d1∑

i=1

d2∨
j=1

xi , j

Chan and Williams proved the following lemma combining small-bias sets ([NN93;
Alo+92]) and modulus-amplifying polynomials ([BT94]):

Lemma 3.10 (Theorem 2.1 in [CW16]). Let d1 and d2 be positive integers such that
10log(d1 ·d2) < d2. There are integers l = 5log(d1 ·d2), N ≤ poly(d1,d2), and a polynomial
Pd1,d2 in d1 ·d2 variables over Zwith m ≤ (d2

2l

) ·d 3
1 d 2

2 monomials, such that for all~x ∈Bd1·d2 ,
SUM-ORd1,d2 (~x) equals the nearest integer to (Pd1,d2 (~x) mod 2l )/N . Furthermore, Pd1,d2

can be constructed in poly(d1) · (d2+1
l

)2
time.

Even though the degree of the polynomial is not mentioned in the stated lemma,
the following fact is contained in its proof. The degree is solely due to the degree of the
modulus-amplifying polynomial.

Lemma 3.11. Pd1,d2 has degree 2l −1.
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3.4. Derandomizing the Algorithm for |◦|

THE DERANDOMIZATION As in Section 3.2, let u = u1 . . .u2 f be a text of length 2 f and
q = q1 . . . q f be a pattern of size f and type ◦|. f is determined later. Recall, that the circuit
to check whether a substring of length f of u is matched by q was defined as follows:

CM (χ(u),χ(q)) :=
f −1∨
i=0

f∧
j=1

s∨
k=1

χ(ui+ j )[k]χ(q j )[k]

=¬
f −1∧
i=0

f∨
j=1

¬
s∨

k=1
χ(ui+ j )[k]χ(q j )[k]

By the definition of χ there is at most one k such that the inner product is true. Hence, we
replace the inner OR by XOR as we did for the randomized case. Furthermore, we replace
the NOT by 1⊕. Additionally, we can assume a s+1th bit for the characteristic vector that
is always set to true to remove the inner 1⊕. By this the circuit changes to:

CM (χ(u),χ(q)) = 1⊕
f −1∧
i=0

f∨
j=1

s+1⊕
k=1

χ(ui+ j )[k]χ(q j )[k]

Before applying Lemma 3.10 we first observe the following:

CM (χ(u),χ(q)) = 1 ⇐⇒ CM (χ(u),χ(q))⊕1 = 0

⇐⇒
f −1∧
i=0

f∨
j=1

s+1⊕
k=1

χ(ui+ j )[k]χ(q j )[k] = 0

⇐⇒
f −1∑
i=0

f∨
j=1

s+1⊕
k=1

χ(ui+ j )[k]χ(q j )[k] < f

Where the outer sum is over the integers and the inner sum, the
⊕

, is over the booleans
(i.e. integer addition modulo 2).

Now rewrite the SUM of ORs by a polynomial P f , f that is guaranteed by Lemma 3.10.

By your choice of d1 = d2 = f , we get l = 5log( f 2) = 10log f and m ≤ ( f
2l

)
f 3 f 2 = ( f

20log f

)
f 5

monomials. Furthermore, the polynomial can be constructed in time poly( f )
( f +1

10log f

)2

and has degree D = 2l −1 = 20log f −1 when considering the
⊕s+1

k=1χ(ui+ j )[k]χ(q j )[k] as
variables Xi , j . But since these Xi , j are no variables, the number of monomials has to be
multiplied by (s+1)D = (s+1)20log f −1 for expanding the XOR. Since these expansions can
be written down in a straightforward way for each i , j , the running time increases by this
factor only. The degree of the polynomial stays the same after this expansion.

To make use of the fast matrix multiplication, we prove the following inequality:

M := m · (s+1)20log f −1 ≤(n/2 f )0.1

⇐⇒ log M +0.1log2 f = logm + (20log f −1)log(s+1)+0.1log2 f ≤0.1logn
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3. UPPER BOUNDS BY FASTER ALGORITHMS

Now it remains to prove this bound:

log M +0.1log2 f = logm + (20log f −1)log(s+1)+0.1log2 f

≤ log

(
f

20log f

)
+5log f +20log f log(s+1)+0.1log2 f

≤ (20log f ) log f +26log f log(s+1)

≤ 46log(s+1)log2 f

When choosing f as follows, the claimed bound holds and f ∈ 2Θ(
p

logn) as for the ran-
domized case if the size of the alphabet is constant:

f := 2
p

logn/460log(s+1)

�
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Chapter

4
Conditional Lower Bounds for Pattern
Matching

In [BI16; BGL17] conditional lower bounds based on SETH are shown ruling out sub-
quadratic time algorithms for pattern matching (and membership) with certain homo-
geneous patterns of bounded depth. Since the two patterns from the previous chapter
are classified to be hard (i.e. no sub-quadratic time algorithm), we cannot hope for much
faster algorithms than the ones given. Furthermore, this implies that there are no sub-
quadratic time algorithms for pattern matching and the membership problem in general.

Using reductions from FORMULA-PAIR and thus from FORMULA-SAT an almost tight
conditional lower bound for pattern matching in general was shown. This bound rules
out an improvement of more than 7 log-factors compared to the quadratic time approach
(see [AB18; Abb+16] for more information).

But in contrast to the lower bounds shown in [BI16; BGL17], this (almost) tight bound
in [AB18] is for non-homegeneous patterns of unbounded depth. Since this bound does
not generalize to patterns of bounded depth and homegeneous type, the question rises
whether we can adopt the result from [AB18] to homegeneous patterns of bounded depth.

In this chapter we show almost tight conditional lower bounds for the pattern match-
ing problem with homogeneous patterns of depth two and three that do not have strongly
sub-quadratic time algorithms, except for |◦| and |◦+. By reducing from FORMULA-PAIR

we show that one cannot shave off an arbitrary number of log-factors from the quadratic
running time for these patterns. Hence, the application of methods yielding super-poly-
logarithmic improvements is not possible (e.g. the polynomial method).

We base all conditional lower bounds on the FORMULA-PAIR HYPOTHESIS (FPH)
(Hypothesis 3). This hypothesis is the implication of the FORMULA-SAT HYPOTHE-
SIS for the FORMULA-PAIR problem which is used for the results in [AB18; Abb+16].
Thus, assuming FPH the currently best algorithm for pattern matching running in time
O(nm/log3/2 n ·polyloglogn) [BT09] is optimal up to a constant number of log-factors
for these pattern types.

STRUCTURE We first state our results in a formal way in Section 4.1. There we also explain
the main ideas of the reductions. Then we give the blue print of all further reductions in
Section 4.2 for patterns of type ◦+◦. In the following sections we show variations for each
pattern type. As a last step we show the proof of one theorem in Section 4.7 which is used
in all reductions. In Appendix A we show that one can modify the result in [AB18] such that
it applies to homogenous patterns of unbounded depth. Even though a weaker version
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4. CONDITIONAL LOWER BOUNDS FOR PATTERN MATCHING

of the bound can be derived from the lower bound for ◦?, it shows that for patterns of
unbounded depth even tighter bounds can be proven.

4.1 Results and General Idea

RESULTS By the observations from [BI16; BGL17] which we mentioned in the introduc-
tion it suffices to show the following theorem. The hardness of the other pattern types is
obtained from these types by Lemma 1.1 and Lemma 1.2. We prove the theorem in the
remaining sections for each pattern type.

Theorem 4.1. Pattern matching with the following homogenous types cannot be solved in
the stated running time even for constant sized alphabets, unless FPH as in Hypothesis 3 is
false:

◦? ◦+◦ ◦|◦ ◦+| ◦|+
O

(
nm

log76 n

)
O

(
nm

log72 n

)
O

(
nm

log81 n

)
O

(
nm

log27 n

)
O

(
nm

log72 n

)
For homogenous patterns of unbounded depth (of type ◦?◦?. . . ) there is no O(nm/log7 n)
time algorithm.

For the lower bounds it suffices to prove the following reductions from FORMULA-PAIR

to pattern matching with the given types and size bounds:

Lemma 4.2. Given a FORMULA-PAIR instance with a formula F of size s and sets A and B
with n half-assignments each. We can reduce this to an instance of pattern matching with
the stated type, the stated bounds for the text length N and pattern size M, constant sized
alphabet, and in time linear in the size of the output:

Type ◦? ◦+◦ ◦|◦ ◦+| ◦|+
N ns6ln5+2 log s ns6ln5+2 log s ns6ln5+2 ns6ln2+2 log s ns6ln5+2 log s

M ns6ln6+2 log s ns6ln5+2 log s ns6ln8+2 ns2 log s ns6ln5+2 log s
Note: The size bound indicates the magnitude, not the actual value (O-notation).

Proof of Theorem 4.1. The theorem directly follows from the lemma since the claimed
running time would directly disprove FPH which is conjectured to be true. For the case of
unbounded depth, see Appendix A.

GENERAL IDEA When analyzing the proof of Theorem E.1 in the full version of [AB18]
one sees that the INPUT and AND gates do not increase the depth of the pattern. The
increase of the pattern depth (and the non-homogeneity) is only caused by the OR gates
(and the outer OR). While it is relatively easy to transform the pattern into a homogenous
one, it is hard to “flatten” it such that the depth becomes constant (and especially ≤3).
Our main idea is that we do not only design one text tg (a) and one pattern pg (b) for pairs
a,b of half-assignment and gate g but also a universal text ug and a universal pattern
qg . These patterns are designed such that the universal text ug can be matched by pg (b)
independently from the half-assignment b. The analog holds for the text tg (a) and the
universal pattern qg . But additionally we also require that ug can be matched by qg .
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4.1. Results and General Idea

All of our reductions use a small (≤ 6) constant sized alphabet but not a binary one!
By using more symbols we can simplify the reduction since several symbols are used
as separators (e.g. 2 and γ) while the symbols 0,1 encode the actual information. It is
unclear and remains an open questions whether the reductions can be done with a smaller
alphabet.

We always start with some De Morgan formula and two half-assignments for two
distinct sets of variables, we also call them assignments in the following. We first define a
separator gadget over the alphabet {0,1,2} that is essentially the binary encoding of the
number of the gate we consider. This separator and the encoding of the INPUT and AND
gate is the same for all reductions. In the case of the AND gate we have that for both
children of the current gate the pattern has to match the corresponding text. This is done
by using the separator gadget enforcing correct alignment. This works because the binary
representation is unique and thus the gadget does not appear somewhere else in the text.
For the OR gate we need some more involved techniques that are (slightly) different for
every pattern type. In general the idea is that we allow the pattern to be aligned to the
text in (at most) two different ways. For the first case the text and the pattern of the left
child of the gate should match and for the second case vice-versa. Using this approach
it remains to design the left most and right most part of the pattern and text such that
the pattern can match the whole text. This is the more involved part since the additional
parts have to be matched, too. For this we use the approach that we define some pattern
that can match some text T and T T . This is different for all pattern types and heavily
exploits the available operators of the pattern. As a last step we have to design the outer
OR such that we can pick one assignment from the first set and one from the other set.
But still the whole pattern has to match some text. We do this by defining a framework
that requires five additional helper gadgets with certain properties. Since these helper
gadgets are in general quite small, one can easily show these requirements.

The reductions we give in the following sections depend not only on the size of the
formula but also exponentially on the depth. Since the depth and the size can be of
same magnitude, we need some techniques to reduce the depth. For this we use the
already known depth-reduction technique as shown in [BB94]. These techniques generate
an equivalent formula whose depth is logarithmic in its size. By this the exponential
dependence on the depth becomes a polynomial dependence on the size. Hence, we can
reduce the proof of Lemma 4.2 to the following lemma:

Lemma 4.3. Given a FORMULA-PAIR instance with a formula F of size s, depth d, and
sets A and B with n and m ≤ n assignments, respectively. We can reduce this to pattern
matching of the stated type, with the stated bounds for the text length N and pattern size
M, constant sized alphabet, and in time linear in the size of the output:

Type ◦? ◦+◦ ◦|◦ ◦+| ◦|+
N O(n5d s log s) O(n5d s log s) O(n5d s log s) O(n2d s log s) O(n5d s log s)

M O(m6d s log s O(m5d s log s) O(m8d s log s) O(ms log s) O(m5d s log s)

Proof Section 4.4 Section 4.2 Section 4.3 Section 4.5 Section 4.6

Proof of Lemma 4.2. We show the result only for patterns of type ◦?, the proof for the
other types is analogous. First apply the depth-reduction technique of Bonet and Buss
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4. CONDITIONAL LOWER BOUNDS FOR PATTERN MATCHING

with k = 2 as stated in Lemma 2.19 (cf. [BB94]) to F . This yields an equivalent formula F ′

of depth d ′ ≤ 6ln2log s and size s′ ≤ s2. Now apply the reduction from Lemma 4.3. Hence,
the text length is O(n56ln2log s s2 log s) and the pattern size O(n66ln2log s s2 log s). Since F ′

is equivalent to F this proves the claimed bound.

NOTATION IN THE FOLLOWING SECTIONS If not stated otherwise, we assume the follow-
ing:

• a and b are two assignments for the two sets of variables. We omit them in the first
section for the sake of easier notation.

• r is the root of F , s the size, and d the depth.

• For any gate g of F , let Fg be the formula restricted to the sub-formula rooted at g .

• Then considering the text tr (a) we omit the index r to simplify notation, the same
holds for patterns pr (b).

• When we consider a gate g , we let g1 and g2 be the left and right child, respectively.
We index texts and patterns corresponding to a specific child by the index of the
child.

4.2 Patterns of Type ◦+◦
4.2.1 Encoding the Formula

We first observe that a formula of size s (that is the number of leaves) has exactly s −1
inner gates and thus 2s −1 gates in total. We associate a unique integer in [2s] with every
gate of the formula and call it the ID of a gate in the following. 1 To simplify notation we
identify the gate with its ID and write 〈g 〉 for the binary encoding of the ID of gate g .

To encode the ID of any gate, i.e. an integer in [2s], we need blog(2s)c+1 = blog sc+2 bits.
Hence, we can assume 〈g 〉 always outputs a sequence of blog sc+2 =Θ(log s) bits padded
with zeros if necessary. Using this we define the separator gadget G when considering a
fixed gate g where the symbol “2” is used to separate the encoding from other gadgets:

G := 2〈g 〉2

INPUT Gate Let the gate g read variable xi (i.e. it comes from the first set). Then the gate
is true if and only if ai = 1. Thus, we define

tg := 0ai 1 pg := 0+11+

If the gate g reads variable yi , we define

tg := 011 pg := 0+bi 1+

We define the universal text and pattern as follows:

ug := 0011 qg := 0+1+

1We use [2s] instead of [2s −1] just to keep notation simple.
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AND Gates We define the texts and the patterns as mentioned in the introduction to this
chapter:

tg :=t1Gt2 ug := u1Gu2

pg :=p1Gp2 qg := q1Gq2

OR Gates The texts and the patterns for gate g are defined as follows:

tg := (u1GGu2)G(u1GGu2)G(t1GGt2)G(u1GGu2)G(u1GGu2)

ug := (u1GGu2)G(u1GGu2)G(u1GGu2)G(u1GGu2)G(u1GGu2)

qg := (u1GGu2)G(u1GGu2)G(q1GGq2)G(u1GGu2)G(u1GGu2)

pg := (u1GGu2G)+(q1GGp2)G(p1GGq2)(Gu1GGu2)+

One can easily see, the definitions of ug , tg , and qg only differ at two positions form
each other: That is where we replace t1 and t2 by u1 and u2 for ug and by q1 and q2

for qg , respectively. The parenthesis in this and all following encodings are not part
of the text or pattern but they are used for grouping reasons and to make reading
easier.

CORRECTNESS AND SIZE BOUND

Lemma 4.4 (Correctness of the Construction). For all assignments a,b and gates g :

• Fg (a,b) = true ⇐⇒ tg (a) ∈L(pg (b))

• tg (a) ∈L(qg )

• ug ∈L(qg )∩L(pg (b))

Proof. The proofs of the second and third claim follow inductively from the encoding of
the gates because of our encoding of the INPUT gate. For the first claim we do a structural
induction on the output gate of the formula.

INPUT Gate “⇒⇒⇒” One can easily see if the gate (i.e. the variable) is satisfied, then the text
matches the pattern. Both are equal up to occurrences of repetitions in the pattern.

INPUT Gate “⇐⇐⇐” If the gate is not satisfied and a variable xi is read, the text changes to
001 but the pattern 0+11+ has to match at least two 1s. Hence, they cannot match.
For the case when a variable yi is read, the pattern changes to 0+01+ but the text
stays 011 and again no match is possible.

AND Gate “⇒⇒⇒” Fg (a,b) = true = Fg1 (a,b)∧Fg2 (a,b) ⇒ Fg1 (a,b) = true∧Fg2 (a,b) = true.
This implies that the pattern matches the text.

AND Gate “⇐⇐⇐” If tg ∈ L(pg ), then the G in the middle of the pattern has to match the
corresponding part in the text because the gadget G does not appear somewhere
else in the text. Furthermore, we know that the complete text is matched. We get
t1 ∈L(p1) and t2 ∈L(p2). By assumption this shows Fg1 (a,b) = true and Fg2 (a,b) =
true and hence Fg (a,b) = Fg1 (a,b)∧Fg2 (a,b) = true.

37



4. CONDITIONAL LOWER BOUNDS FOR PATTERN MATCHING

OR Gate “⇒⇒⇒” Fg (a,b) = Fg1 (a,b)∨Fg2 (a,b) = true. Assume w.l.o.g. that Fg1 (a,b) = true,
the other case is symmetric. By assumption t1 ∈ L(p1). The first part of the pat-
tern, i.e. (u1GGu2G)+, is only repeated once. Because of this, we can transform
q1GGp2 into the second u1GGu2 by our third claim of the lemma. Now the p1GGq2

matches t1GGt2 by our assumption and the second claim. Finally, we match
Gu1GGu2Gu1GGu2 by two repetitions of (Gu1GGu2)+.

OR Gate “⇐⇐⇐” Assume tg ∈L(pg ). This implies that the Gs in the text have to be matched.
Furthermore, since the complete text is matched, the two repetitions can only be
repeated once or twice each. Otherwise we had to match t1 to u1 and t2 to u2. This
is impossible since u1 and u2 are strings and hence do not allow to match any other
string.

Assume the first repetition is only repeated once. Then, the following q1GGp2 has to
be matched to the second u1GGu2 in the text. This follows from the fact that the Gs
in the pattern have to match the Gs in the text since they do not occur somewhere
else in the text. But then it must be the case that p1 is transformed into t1 showing
that the gate has to be satisfied by the inductive hypothesis.

Precisely this argument holds for the second repetition, too. Thus, we can assume
that the first and second repetition are repeated twice each. Then t1GGt2 must
be matched to (q1GGp2)G(p1GGq2), i.e. the remaining part of the pattern. But
since the text contains two Gs and the pattern has to match five Gs, this leads to a
contradiction and hence this case cannot occur.

LENGTH OF THE TEXT AND THE PATTERN By a close observation we can see that the
construction of the texts and the patterns can be done straight forward. For this we only
have to recurse on the formula. All texts and patterns can be constructed by the same
recursive call since we can write down the texts and patterns explicitly when we have
the texts and patterns for the two sub-formulas given. By this the running time of the
encoding takes time linear in the size of the output by using space that is also linear in
this. Thus, it remains to analyse the length of the texts and the size of the patterns:

Lemma 4.5. |ur |, |tr |, |pr |, |qr | ∈O(5d s log s).

Proof. pg is obviously smaller than ug . Hence, it suffices to analyse the length of ug since
the sizes of ug , tg , and qg are asymptotically equal:

|ug | ≤ 5|u1|+5|u2|+O(log s)

Inductively over the d(Fg ) levels of Fg this yields |ug | ≤ O(5d(Fg )s log s). The factor of
s log s is because there are O(s) inner gates and each introduces O(log s) symbols.

4.2.2 Final Reduction

Instead of giving the direct construction and proof for this and every other pattern type,
we show a generalized version that makes use of helper gadgets. The final text and pattern
depend on the texts and patterns we defined above and on new helper gadgets for which
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we require some properties. As soon as we define these gadgets for this and the other
pattern types, we directly get the final text and pattern by the following theorem. The two
texts S and S′ and the three patterns η, U2, and U3 have to satisfy the following properties:

• S is a proper substring of S′ and S,S′ ∈L(η).

• S, S′, and η only consist of fresh symbols.

• S′ has a non-empty substring that cannot be matched by U2.

• |S′|, |U2|, |U3|, |η| ∈O(|ur |).

• {Sur S,Sur Sur S} ∈L(U2)

• {S,S′}◦ {ur S,ur Sur S,ur Sur Sur S} ∈L(U3)

• For all t : Sur S′t ∉L(U3)

• Either (1) L(U3) ⊆L(η(ur S)+) or (2) for any word t ∈L(U3) there are at most four
disjoint intervals that consist only of symbols that occur in S or S′. The last interval
ends at the end of t .

Analogously for three intervals for U2.

Theorem 4.6. Given the following:

• A monotone De Morgan formula F of size s.

• Sets A and B of n and m ≤ n half-assignments to s/2 variables, respectively.

• A text gadget t(a) and a pattern gadget p(b) for a ∈ A and b ∈ B, such that t(a) ∈
L(p(b)) if and only if F (a,b) = true.

• A universal text gadget ur and a universal pattern gadget qr such that ur , t (a) ∈L(qr )
for all a ∈ A and ur ∈L(p(b)) for all b ∈ B.

• Helper gadgets S,S′,η,U2, and U3 as described above.

Then we can construct a text t and a pattern p such that t ∈M(p) if and only if there
is an a ∈ A and a b ∈ B such that F (a,b) = true. Furthermore, |t | = O(n(|ur | + |t(0)|)),
|p| =O(m(|ur |+ |p(0)|+ |qr |)) and t and p are concatenations of gadgets.

We prove the theorem in Section 4.7. One can easily see, that the first four assumptions
are satisfied by Lemma 4.4. Thus it only remains to define the helper gadgets with the
claimed properties:

S :=γ
S′ :=γγ
η :=γ+

U2 :=γ(urγ)+

U3 :=γ+(urγ)+

The correctness of these gadgets follows directly from the fact that γ is a fresh symbol that
has not occurred so far. �
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4.3 Patterns of Type ◦|◦
First observe that for the encoding of the formula in the reduction for ◦+◦ each repetition
was taken at most twice. Hence, we can hardcode these repetitions in our reduction by
replacing α+ by (α |αα). Thus, we only show the changes in the reduction compared to
the results given in Section 4.2.

For the encoding of the INPUT gate we replace every 1+ by (1 | 11) and 0+ by (0 | 00).
While the encoding of the AND gate stays the same, we change the definition of pg for the
OR gate to the following while ug , qg , and tg remain unchanged:

pg :=(u1GGu2Gu1GGu2 | u1GGu2)G(q1GGp2)G(p1GGq2)G(u1GGu2Gu1GGu2 | u1GGu2)

The correctness proof for ◦+◦ directly shows the correctness of this encoding, too.
Only the size bound for the pattern pr changes.

Lemma 4.7. |ur |, |tr |, |qr | ∈O(5d s log s) and |pr | ∈O(8d s log s).

Proof. Since we only changed the definition of pg we get |ug |, |tg |, |qg | ∈O(|pg |) and thus
only have to analyse the size of pg :

|pg | ≤6|u1|+6|u2|+ |q1|+ |q2|+ |p1|+ |p2|+O(log s) ≤ 8|p1|+8|p2|
≤8d(Fg )O(log s + s log s) =O(8d(Fg )s log s)

With the same argument as in the proof of Lemma 4.5.

For the helper gadgets required for the application of Theorem 4.6, we also write down
the number of repetitions explicitly, as for the encoding of the formula:

S :=γ
S′ :=γγ
η :=(γ | γγ)

U2 :=γ(ur | urγur )γ

U3 :=(γ | γγ)(ur | urγur | urγurγur )γ

The correctness of these gadgets follows directly from the correctness of the gadgets for
◦+◦. �

4.4 Patterns of Type ◦?
ENCODING THE FORMULA In the two previous sections we have seen the reductions for
◦+◦ and ◦|◦. Both reductions are related very closely. Now we extend these techniques to
patterns of type ◦?. For this we first observe that a pattern asσ+ can be seen as short-hand
for σσ∗. Thus, the encoding of the INPUT and AND gates stays the same as in Section 4.2
since this definition is quite general.

Only the encoding of the OR gate has to be modified since we cannot transfer it directly
such that it applies to this reduction. But it suffices to simulate the (u1GGu2G)+ by a
pattern of type ◦?. For this we use a similar approach as for the Kleene Plus of a single
symbol but we use the starred version of a text where every symbol is starred:
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4.4. Patterns of Type ◦?

Definition 4.8 (Starred Version of a Text). Let t = t1 . . . tn be a text of length n. The starred

version
?
t is a pattern of type ◦? and defined as follows:

?
t := t∗1 t∗2 . . . t∗n

By this it suffices to change the definition of pg as follows such that we can reuse the
tg , ug , and qg from the reduction for ◦+◦:

pg := (
?

u1
?
G
?
G

?
u2)

?
G(u1GGu2)G(q1GGp2)G(p1GGq2)G(u1GGu2)

?
G(

?
u1

?
G
?
G

?
u2)

Lemma 4.9 (Correctness of the Construction). For all assignments a,b and gates g :

• Fg (a,b) = true ⇐⇒ tg (a) ∈L(pg (b))

• tg (a) ∈L(qg )

• ug ∈L(qg )∩L(pg (b))

Proof. Again the proof of the last two claims follows directly from the encoding of the
gates. Since the definition of the INPUT and AND gate is the same as for ◦+◦, we only
show the inductive step for the OR gate. Recall, that the text is defined as

tg := (u1GGu2)G(u1GGu2)G(t1GGt2)G(u1GGu2)G(u1GGu2).

“⇒⇒⇒” Fg (a,b) = Fg1 (a,b)∨Fg2 (a,b) = true. Assume w.l.o.g. that Fg1 (a,b) = true, the other
case is symmetric. By assumption t1 ∈L(p1). We match the first sequence of starred
symbols to the empty string ε. Then we match u1GGu2G to each other. By the
third claim above we can match u1GGu2 to q1GGp2. Then by the assumption and
the second claim, we match t1GGt2 to p1GGq2. The remaining part of the text is
matched in the canonical way to the pattern while the starred sequence matches
the original text.

“⇐⇐⇐” Assume tg ∈L(pg ). We first observe, that the Gs in the pattern have to be matched
to these strings in the text and that the text was matched completely. Since the
first non-starred GG in the pattern has to be matched to a GG in the text, one can
easily see that the first starred sequence has to be matched to the empty string or
to u1GGu2G . The same argument holds for the other starred sequence. Thus it
remains to check four different cases:

• The first sequence produced the empty string and the last sequence did not.
The other way is symmetric. Then the remaining part of the pattern p ′ has to
match the remaining part of the text t ′:

t ′ =(u1GGu2)G(u1GGu2)G(t1GGt2)G(u1GGu2)

p ′ =(u1GGu2)G(q1GGp2)G(p1GGq2)G(u1GGu2)

Since the Gs in the pattern have to match Gs in the text, we get t1 ∈L(p1) and
thus a satisfying assignment.
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4. CONDITIONAL LOWER BOUNDS FOR PATTERN MATCHING

• Both starred sequences produce a non-empty string, i.e. their non-starred
version. Then the remaining text in between contains three GGs to which the
four GGs of the remaining pattern have to be matched. A contradiction.

• Both starred sequences produce the empty string. Since u1 and u2 are strings
the following text t ′ has to be matched by the remaining pattern p ′:

t ′ =(u1GGu2)G(t1GGt2)G(u1GGu2)

p ′ =(q1GGp2)G(p1GGq2).

When taking a closer look at the definition of the universal pattern qh and
the universal text uh , one can see that they only differ at the definition of the
INPUT gates. Thus, we we cannot match qh to something different that uh in
the above setting. These observations imply u2Gt1GGt2Gu1 ∈L(p2Gp1). We
use the following claim to obtain a contradiction for this case: The number of
symbols changes for every word in L(p2Gp1) is bounded by A(p1)+ A(p2)+
`+2 with `= A(G). But the text has 2A(u1)+2A(u2)+4`+7 symbol changes
and thus cannot be matched by the pattern by Claim 4.4.1.

Definition 4.10 (Symbol Changes). We define A(t ) to be the number of symbol changes in
the text t : Define A(σ) := 0 for any symbolσ and A(t1 . . . tn−1tn) := A(t1 . . . tn−1)+Jtn−1 6= tnK.
For patterns p we define A(p) = maxt∈L(p) A(t ).

B Claim 4.4.1. A(ug ) = A(tg ) = A(qg ) and 2A(ug ) > A(pg ).

Proof. We first observe A(ug ) = A(tg ) = A(qg ) since their definitions only differ for the
INPUT gate for which the claim holds. We show the main claim by a structural induction
on gate g .

INPUT Gate We have A(ug ) = A(pg ) = 1 and thus the claim holds.

AND Gate A(ug ) = A(u1)+ A(u2)+ A(G)+2 since all texts and patterns start with 0 and
end with 1. Thus, A(pg ) = A(p1)+ A(p2)+ A(G)+2 for the same reason and hence
the claim follows inductively.

OR Gate From A(ug ) = 5A(u1)+5A(u2)+14A(G)+18 we get

2A(ug ) =10A(u1)+10A(u2)+28A(G)+36

=5A(u1)+5A(u2)+5A(u1)+5A(u2)+28A(G)+36

IH>5A(u1)+5A(u2)+2.5A(p1)+2.5A(p2)+28A(G)+36

>5A(u1)+5A(u2)+ A(p1)+ A(p2)+17A(G)+22 = A(pg )

Lemma 4.11. |ur |, |tr |, |qr | ∈O(5d s log s) and |pr | ∈O(6d s log s).

Proof. As for the modified encodings in Section 4.3 we have |ug |, |tg |, |qg | ∈O(|pg |). Due
to the changed definition of pg we get:

|pg | ≤4|u1|+4|u2|+ |q1|+ |q2|+ |p1|+ |p2|+O(log s) ≤ 6|p1|+6|p2|+O(log s)

≤6d(Fg )O(log s + s log s) =O(6d(Fg )s log s)
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FINAL REDUCTION Again we make use of Theorem 4.6 by defining the helper gadgets as
follows:

S :=γγγ
S′ :=δγγγ
η :=δ∗γ+

U2 :=γ+ ?
urγ

+urγ
+

U3 :=δ∗γ+ ?
urγ

+ ?
urγ

+urγ
+

Recall, that γ+ is syntactic sugar for γγ∗. �

4.5 Patterns of Type ◦+|
ENCODING THE FORMULA For the encoding of the formula we again reuse the encoding
of the INPUT and AND gate from the reduction for patterns of type ◦+◦. This is because
only the encoding of the OR gate introduces the operator of depth three. Hence, we
have to use a different approach to encode the OR. Since patterns of type ◦+| can match
arbitrary string, we have to adopt the encodings of the OR gate a bit while the main idea
still stays the same:

tg := 0G(t1GGu2)G(u1GGt2)G1

ug := 0G(u1GGu2)G(u1GGu2)G1

qg := 0G(q1GGu2)G(u1GGq2)G1

pg := (0 | 1 | 2)+G(p1GGp2)G(0 | 1 | 2)+

Lemma 4.12 (Correctness of the construction). For all assignments a,b and gates g :

• Fg (a,b) = true ⇐⇒ tg (a) ∈L(pg (b))

• tg (a) ∈L(qg )

• ug ∈L(qg )∩L(pg (b))

Proof. Again we only show the inductive step for the OR case of the first claim.

“⇒⇒⇒” Fg (a,b) = Fg1 (a,b)∨Fg2 (a,b) = true. Assume w.l.o.g. that Fg1 (a,b) = true, the other
case is symmetric. The first repetition is transformed into the initial 0. Then we
match p1GGp2 to t1GGu2 by our third claim of the lemma and the assumption that
t1 ∈L(p1). Since the text only consists of symbols from {0,1,2}, the remaining part
u1GGt2G1 can be matched by the second repetition.

“⇐⇐⇐” Assume tg ∈L(pg ). Since the GGs in the text have to match one of the two GG in the
text there are only two possible ways, how the text was matched by the pattern. If the
GG of the pattern matched the first GG of the text, then also the first G of the text and
the first G of the pattern matched each other. Hence, Gt1GG ∈L(Gp1GG) and this
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implies t1 ∈L(p1). The induction hypothesis guarantees a satisfying assignment.
The analog arguments hold for the second case when the GG in the pattern matches
the second GG in the text. Then the last G of the text and the pattern have to match
and this implies t2 ∈L(p2).

Lemma 4.13. |tr |, |ur |, |qr | ∈O(2d s log s) and |pr | ∈O(s log s).

Proof. Again we have O(|ug |) =O(|tg |) =O(|qg |). Hence, we only analyse ug :

|ug | ≤ 2|u1|+2|u2|+O(log s) ≤ 2d(Fg )O(log s + s log s) =O(2d(Fg )s log s)

With the same argument as for the previous size bounds. For the size of the pattern we get
|pg | ≤ |p1|+ |p2|+O(log s) ≤O(s log s).

FINAL REDUCTION As for the patterns before, we use Theorem 4.6 to conclude the proof
of Lemma 4.3 for this pattern type.

S :=γαγαγα
S′ :=δγαγαγα
η :=(α | γ | δ)+

U2 :=(α | γ)+(α | 0 | 1 | 2)+(α | γ)+αur (α | γ)+

U3 :=(α | γ | δ)+(α | 0 | 1 | 2)+(α | γ)+(α | 0 | 1 | 2)+(α | γ)+αur (α | γ)+

The correctness follows directly by the definition of these gadgets. �

4.6 Patterns of Type ◦|+
ENCODING THE FORMULA To reuse the definitions from the previous sections we have to
allow unary alternatives. By this we can see the pattern σ+ as a pattern of type |+ for some
symbol σ ∈ Σ. This is reasonable since we can replace σ+ by (σ | σ+) which represents
exactly the same language as just σ+. One could also use a fresh symbol α which will
never appear in the text and replace σ+ by (α |σ+).

In the previous encodings of the OR gate we made use of the fact that we can define
a pattern that can match T and T T for some text T . But for patterns of type ◦|+ this
is not that easily possible since we cannot omit symbols and every sub-pattern of the
concatenation has to produce at least one symbol. For this we introduce the barred
version of a text that transforms it into a pattern such that we can match the whole
concatenation to the repetition of the same symbol and still to the original text.

Definition 4.14 (Barred Version of a Text). Let τ be a symbol and t = t1 . . . tn be a text of
length n. We define the barred version of t as a pattern of type ◦| as follows:

t
τ := (t1 | τ)(t2 | τ) . . . (tn | τ)
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Using this we change the encoding of the OR gate to the following:

tg := 0|u1GGu2G|+1(u1GGu2)G(t1GGt2)G(u1GGu2)1|Gu1GGu2|+1

ug := 0|u1GGu2G|+1(u1GGu2)G(u1GGu2)G(u1GGu2)1|Gu1GGu2|+1

qg := 0|u1GGu2G|+1(u1GGu2)G(q1GGq2)G(u1GGu2)1|Gu1GGu2|+1

pg := 0+u1GGu2G
0

(q1GGp2)G(p1GGq2)Gu1GGu2
1

1+

Lemma 4.15 (Correctness of the construction). For all assignments a,b and gates g :

• Fg (a,b) = true ⇐⇒ tg (a) ∈L(pg (b))

• tg (a) ∈L(qg )

• ug ∈L(qg )∩L(pg (b))

Proof. Again we only show the proof for the OR gate in the first claim.

“⇒⇒⇒” Fg (a,b) = Fg1 (a,b)∨Fg2 (a,b) = true. Assume w.l.o.g. that Fg1 (a,b) = true, the other
case is symmetric. We match the first barred text to a repetition of 0s which is
possible by the definition of the barred text. Then q1GGp2 matches u1GGu2 by the
third claim of the lemma. Now p1 matches t1 by the induction hypothesis and t2 is
matched to q2 by the second claim of the lemma. Then the second barred pattern
matches its original text while the repetition of 1s is matched by 1+.

“⇐⇐⇐” Assume tg ∈L(pg ). Since the whole text has to be matched and the Gs in the pattern
have to match Gs in the text, there are three possibilities how the GGs of the pattern
can be matched to the GGs in the text:

• The first GG of the pattern matches the first GG of the text and the second
of the text is matched by the second of the pattern. But this implies that
u2Gt1 ∈ L(p2Gp1) and since the G can only match itself, we get t1 ∈ L(p1)
which gives us a satisfying assignment by the induction hypothesis.

• The first GG of the pattern matches the first GG of the text and the second
GG of the pattern matches the third GG of the text. We get u2Gt1GGt2Gu1 ∈
L(p2Gp1). Here we can use the same argument as for ◦? and show that the
number of symbol changes for every word in L(p2Gp1) is at most A(p1)+
A(p2)+A(G)+2 while the text has 2A(u1)+2A(u2)+4A(G)+6 symbol changes.
Analogous to Claim 4.4.1 we can show that this case cannot occur since
2A(uh) > A(ph).

• The first GG of the pattern matches the second GG of the text and the third of
the text is matched to the second of the pattern. This case is symmetric to the
first case and implies t2 ∈L(p2).

Lemma 4.16. |ur |, |tr |, |qr |, |pr | ∈O(5d s log s).
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Proof. We first observe O(|ug |) =O(|tg |) =O(|qg |) and |pg | ∈O(|ug |). Hence, we only
analyse the size of ug :

|ug | ≤5|u1|+5|u2|+O(log s)

The claim follows by the same argument as before.

FINAL REDUCTION For the definition of the helper gadgets we set ` := |ur | to simplify
notation. Let γ and α be fresh symbols.

S :=γα`+5γα`+5γα5

S′ :=γS

η :=γ+α+γα+γα+

U2 :=γα+(α | γ)α+(α | γ)α+ur
αγα+(α | γ)α+(α | γ)α+ur S

U3 :=γ+α+(α | γ)α+(α | γ)α+ur
αU2

With Theorem 4.6 this concludes the proof of the corresponding part of Lemma 4.3. �

4.7 Proof of Theorem 4.6

We assume the following properties of the helper gadgets:

• S is a proper substring of S′ and S,S′ ∈L(η).

• S, S′, and η only consist of fresh symbols.

• S′ has a non-empty substring that cannot be matched by U2.

• |S′|, |U2|, |U3|, |η| ∈O(|ur |).

• {Sur S,Sur Sur S} ∈L(U2)

• {S,S′}◦ {ur S,ur Sur S,ur Sur Sur S} ∈L(U3)

• For all t : Sur S′t ∉L(U3)

• Either (1) L(U3) ⊆L(η(ur S)+) or (2) for any word t ∈L(U3) there are at most four
disjoint intervals that consist only of symbols that occur in S or S′. The last interval
ends at the end of t . Analogously for three intervals for U2.

Let A = {a(1), . . . , a(n)} be the first set and B = {b(1), . . . ,b(m)} be the second set of half-
assignments. Inspired by the reduction in Section 3.4 in the full version of [BI16] we define
the final text and pattern as follows:

t :=
3n⊙

i=1

(
S′ur Sur Sur St (a(i ))Sur Sur Sur Sur

)
p := Sur Sur Sur Sur

m⊙
j=1

(
U3urηqr Sp(b( j ))U2qr

)
Sur Sur Sur Sur

Where we set a( j ) = a( j mod n) for j ∈ [n +1,3n]. We call the concatenations in t and p for
each i and j the i th text group and the j th pattern group, respectively.
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CORRECTNESS AND SIZE BOUND We split the proof of the theorem in three lemmas,
about the completeness, correctness and the size bound.

Lemma 4.17. If there are a(k) and b(l ) such that F (a(k),b(l )) = true, then t ∈M(p).

Proof. Assume w.l.o.g. a(k) and b(k) satisfy F . Otherwise we have to shift the indices
for the text and the pattern in the proof accordingly. We match the prefix of p to the
corresponding suffix of the nth group of the text. Then we match the i th group of the text
to the i th group of the pattern for i = 1, . . . ,k −1 as follows using the assumptions:

U3 ur ηqr S p(b( j )) U2 qr

S�ur Sur S ur St (a(i ))S ur Sur Sur S ur

i th pattern group

i th text group

Then we match the kth and k +1th group of the pattern to the kth group of the text and a
part of the k +1th group of the text as follows, which is again possible by the assumptions:

U3 ur ηqr S p(b(k)) U2 qr U3 ur ηqr S p(b(k+1)) U2 qr

S�ur S ur Sur S t (a(k)) Sur S ur Sur S ur S�ur S ur Sur S t (a(k+1))

kth pattern group

kth text group

k +1th pattern group

beginning of k +1th text group

Now we shift the remaining part t ′ of the text such that it becomes easier to show which
part the remaining pattern matches:

t ′ =Sur Sur Sur Sur

3n⊙
i=n+k+2

(
S′ur Sur Sur St (a(i ))Sur Sur Sur Sur

)
=

3n⊙
i=n+k+2

(
Sur Sur Sur Sur S′ur Sur Sur St (a(i ))

)
Sur Sur Sur Sur

Now we match the i th group of the pattern to the i th group of the text t ′ for i = n +k +
2, . . . ,m. We do this by matching Sur Sur Sur S to U3 and Sur S to U2. The other parts are
matched in a straightforward way. Finally, the suffix of the pattern is matched to the prefix
of the m +1th group of the text in the canonical way.

Lemma 4.18. If t ∈M(p), then there are a(k) and b(l ) such that F (a(k),b(l )) = true.

Proof. By the design of the pattern and the text, there must be a j ≤ n such that the prefix
of the pattern is matched to the suffix of the j −1th group of the text. Furthermore, we
know that the suffix of the pattern has to match the suffix of some text group because
nowhere else the four Sur could be matched. By this we know that not all groups of the
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pattern and the text match each other precisely. Meaning, there is a text group k and
a pattern group l such that the pattern group does not match the whole text group or
matches more than this group. We choose the first of these groups (i.e. the pair with
smallest k and l ).

Since all prior groups have been matched precisely, U3 has to match (some prefix
of) S′ur Sur Sur S. Because the S have to be aligned to each other and we know by our
assumption that either (1) all substrings between S or S′ are equal and thus t (a(l )) cannot
be matched, or (2) for all matched word there are at most four disjoint intervals of text
positions where S and S′ could be located. We observe further that U3 can only match
(some prefix of) S′ur Sur S because otherwise the following ur in the pattern has to match
t (a(i )).

• If U3 matches S′ur S, then the following ur in the pattern and text match each other.
Hence, ηqr S has to match Sur S because the S have to be aligned. This implies that
p(b( j )) matches t (a(i )) and by our assumptions this gives us a satisfying assignment
for F .

• Now assume for the sake of a contradiction that U3 matches S′ur Sur S. Then the
following ur match each other such that qr matches t (a(i )) and p(( j )) matches ur .
Observe that U2 can only match Sur Sur S. Assume it matches only Sur S, then qr

matches the second last ur and U3 has to match a word with Sur S′ as prefix. A
contradiction to one of the assumptions. U2 can also not match more than Sur Sur S,
because then it has to match S′ which is not possible since S′ contains a substring
that cannot be matched by U2 by assumption. But then we have that qr matches
the last ur of the text group, and the text and the pattern group match each other.
This is a contradiction to our assumption that these groups do not match.

Lemma 4.19. The final text has lengthO(n(|ur |+|t (0)|)) and the pattern has sizeO(m(|ur |+
|p(0)|+ |qr |)).

By this we conclude the proof of Theorem 4.6. �
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Chapter

5
Conditional Lower Bounds for Membership

In the previous Chapter 4 we have seen conditional lower bounds for pattern matching.
In this chapter we show lower bounds for the membership problem. Recall that for the
membership problem the whole string has to be matched while for the matching problem
only a substring has to be matched.

Theorem 5.1. Membership with homogenous patterns of the following types cannot be
solved in the stated running time even for constant sized alphabet, unless FPH as stated in
Hypothesis 3 is false:

◦? ◦+◦ ◦|◦ ◦+| ◦|+ |+|◦
O

(
nm

log76 n

)
O

(
nm

log72 n

)
O

(
nm

log81 n

)
O

(
nm

log27 n

)
O

(
nm

log72 n

)
O

(
nm

log20 n

)
Instead of showing the lower bounds and thus reductions from scratch, we reduce

pattern matching to membership. By this we can reuse the results from the previous
chapter. Although our reductions change the size of the pattern and the text, we can use
them since they do not change the asymptotic size of the text and pattern as defined in
the previous chapter.

Lemma 5.2 (Reducing Pattern Matching to Membership). Let t be a text and p be a pattern
of type T . For the mentioned pattern types we can construct a text t ′ and a pattern p ′ such
that

t ∈L(p) ⇐⇒ t ′ ∈M(p ′)

with the following size bounds for t ′ and p ′:
◦? ◦+◦ ◦|◦ ◦+| ◦|+

|t ′| O(|t |) O(|Σ||t |) O(|t |) O(|t |) O(|t |)
|p ′| O(|t |+ |p|) O(|Σ|(|t |+ |p|)) O(|Σ||t |+ |p|) O(|Σ|+ |p|) O(|t |+ |p|)

Proof Section 5.1.1 Section 5.1.2 Section 5.1.3 Section 5.1.4 Section 5.1.5

Proof of Theorem 5.1. From Lemma 4.3 we know that we can reduce FORMULA-PAIR to
pattern matching. With the above lemma, we can reduce this pattern matching instance to
membership without changing the size. Thus the running time transfers and the theorem
follows directly from Theorem 4.1. We show the proof for |+|◦ in Section 5.2.
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5. CONDITIONAL LOWER BOUNDS FOR MEMBERSHIP

5.1 Reducing Pattern Matching to Membership

We assume that t is the text and p is the pattern as in Lemma 5.2. Let w.l.o.g. Σ= {1, . . . ,s}
be the alphabet of the text and the pattern. When using Σ as a pattern we mean (1 | · · · | s).
Likewise for Σ+ which is shorthand for (1 | · · · | s)+. We extend this in the natural way to
other sets of symbols.

5.1.1 Patterns of Type ◦?
Recall the starred version of a text as in Definition 4.8 introduced in Section 4.4. With this
we define the text t ′ and the pattern p ′ as follows:

t ′ :=t

p ′ :=?t p
?
t

Then we obviously have:
t ∈M(p) ⇐⇒ t ′ ∈L(p ′)

Because the pattern p has to match some substring of t ′ = t .

5.1.2 Patterns of Type ◦+◦
We define the reduction in two steps. First we encode every symbol in a special way such
that we can define a universal pattern U of type ◦+ in step two matching any symbol. For
this we define a function f : Σ→ Σs+1 with x 7→ 1 · · ·(x −1)xx(x +1) · · ·s. We extend this
definition in the natural way to texts by applying it to every symbol. We also extend this
definition to patterns of type ◦+◦ such that we apply f to every symbol of the pattern.
Observe that this does not change the type of the pattern. This encoding preserves the
membership property for the matching language:

t ∈M(p) ⇐⇒ f (t ) ∈M( f (p))

In the second step we change from pattern matching to membership. For this we set U :=
1+2+ · · ·s+ and R := 12 · · ·s. From the definition we directly get the following properties for
all σ ∈Σ:

R ∈L(U )

f (σ) ∈L(U )

R ∉L( f (σ))

Using this we define the final text and pattern as follows:

t ′ :=R |t |+1 f (t )R |t |+1

p ′ :=R+U |t | f (p)U |t |R+

If t ∈ M(p), then there is a substring t̂ of t to which p is matched. By the above
observations we can match f (p) to f (t̂), which is a substring of f (t). Then we use the
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5.1. Reducing Pattern Matching to Membership

U |t | to match the not matched suffix and prefix of t and a part of R |t |+1. The remaining
repetitions of R are matched by the R+ in the beginning and the end.

If t ′ ∈L(p ′), then f (p) has to match some substring of f (t ) because f duplicates the
original symbol and thus R cannot be matched, since there are no repetitions.

5.1.3 Patterns of Type ◦|◦
Using L := 2dlog|t |e we define the text and the pattern as follows with α as a new symbol:

t ′ :=α3L−1tα3L−1

p ′ :=
logL⊙
i=0

(
α2i |α2i+1

)
(Σ∪ {α})L p(Σ∪ {α})L

logL⊙
i=0

(
α2i |α2i+1

)
If t ′ ∈ L(p ′), it is clear that there must be some substring of t which is matched by p
because p cannot match strings containing α. The other direction is not completely
obvious. Observe that the first and last concatenation of p ′ can match αz for all z ∈
[2L−1,4L−2]: We know that the binary encoding of a number k ∈ [0,2L−1] has ≤ logL+1
bits. We use the alternatives in the concatenation to represent this binary encoding by
choosing the left option α2i

if the i th bit is 0 and the right option α2i+1
if the bit is 1. But

we can also see the options as choosing ε for the left side and α2i
for the right side but

always appending α2i
independent from the value of the i th bit:

logL⊙
i=0

(
α2i |α2i+1

)
≡

logL⊙
i=0

α2i
(
ε |α2i

)
By the correctness of the binary encoding there are 2L−1+k repetitions of α produced
by this procedure.

Now if t ∈ M(p), we know there is a substring of t that is matched to p. The not
matched suffix and prefix of t are matched by the alternatives of length L directly before
and after p in p ′. The sub-patterns of these alternatives which do not match a part of the
text t match some prefix and suffix of α3L−1. The remaining part is of length at least 2L−1
and at most 3L−1 ≤ 4L−2 and can thus be matched by the above observations.

We observe L ≤ 2|t | because of the rounding. Furthermore, the size of the pattern is
increased by O(s ·L) for the alternatives of symbols and by

logL∑
i=0

2i +2i+1 = 2logL+1 −1+2(2logL+1 −1) =O(L)

for the concatenation of alternatives.

5.1.4 Patterns of Type ◦+|
We define:

t ′ :=1t1

p ′ :=Σ+pΣ+
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5. CONDITIONAL LOWER BOUNDS FOR MEMBERSHIP

If t ′ ∈ L(p ′) we know that the first and last repetition of p ′ match at least the first and
last symbol of the text. Thus, the pattern p has to match some substring of t . The other
direction is trivial.

5.1.5 Patterns of Type ◦|+
With α as a new symbol we define:

t ′ :=α|t |+1tα|t |+1

p ′ :=α+(1 | · · · | s |α)|t |p(1 | · · · | s |α)|t |α+

If t ∈ M(p) then there is some substring of t that is matched by p. This part is also
matched in the membership instance. The not matched prefix of t is matched by the
sequence of alternatives. The remaining αs in the text are matched by α+.

If t ′ ∈L(p ′), then p has to match some part of t because it cannot match any α.
�

5.2 Patterns of Type |+|◦
In the last section we have seen the reduction from pattern matching to membership
and thus concluded the proof for the lower bounds of these pattern types. As shown
in the introduction and originally in [BI16] almost all patterns that are hard for pattern
matching are also hard for membership. Except for the two patterns |◦| and |◦+ for which
we have shown faster algorithms in Chapter 3. They are easy (i.e. linear time solvable)
for membership. But there is also one pattern that is easy for pattern matching while it
does not have near linear time algorithms for membership. This so called word break
problem considers patterns of type +|◦. It can be seen as the task of splitting an input
string into words occurring in a dictionary. It has the same complexity as?|◦. The problem
can be solved in time O(n(m logm)1/3 +m) as shown in [BGL17]. They also show that
this is optimal if all combinatorial k-clique algorithms need nk−o(1) time. Hence, it is
the only intermediate problem between quadratic and near linear time complexity for
membership.

In this section we show the hardness for membership with pattern of type |+|◦. This
is one possible extension of +|◦ to patterns of depth four. We only consider this pattern
since ?+|◦ is identical to +|◦ from a complexity theoretic perspective and the hardness of
◦+|◦ comes from ◦+| for which we proved the hardness in Theorem 5.1.

Theorem 5.3. Membership with patterns of type |+|◦ and even constant sized alphabet
cannot be solved in time O(nm/log20 n), unless FPH as stated in Hypothesis 3 is false.

MAIN IDEA As for the previous lower bounds we encode the formula and its evaluation
by the text and the pattern. But since our pattern is represented by several dictionaries
containing multiple words, we have to make sure that the text can be matched (if the
formula is evaluated to true) and more important that the words are only used for their
intended purpose. The main idea is that the encoding of each gate is enclosed by the root
to gate path for this gate, we call it the trace in the following. This additional information
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5.2. Patterns of Type |+|◦

allows us to skip several parts of the text because all descendants of a gate g have g in
their trace. During this skipping phase we “disable” the check of the formula whether it is
satisfied or not. The encoding of the INPUT gates takes care that we do not care about
the assignment of the variable if we are in this skipping phase. The encoding of the AND
gate has to make sure that we carry forward whether we are in this skipping phase or the
actual matching phase. For the OR gate this is somewhat different since we can ignore
one of the sub-formulas if the other one is evaluated to true. We define the dictionary
such that at least one sub-pattern matches the text if we are in the matching phase.

In the following we define several dictionaries DM
g and DS

g for each gate g . These
dictionaries contain the words that are added to the final dictionary for this gate. The
dictionary DM

g describes the words that are used in the matching phase (corresponds
to pg from the previous chapter) while the words for the skipping phase are grouped
together in DS

g (corresponds to qg ). We define Dg to be the dictionary containing all

words and dictionaries DM
g ′ and DS

g ′ for each gate g ′ that appears in the formula Fg .

5.2.1 Encoding the Formula

As in the previous chapter we identify each gate with its ID, i.e. an integer in [2s]. For a
gate g let 〈g 〉 be the binary encoding of the gate ID with blog sc+2 =Θ(log s) bits padded
with zeros if necessary.

When considering a gate g , let h0h1 . . .hd be the path from the root r = h0 of F to the
gate g = hd . To simplify notation we identify each gate ĝ with 2〈ĝ 〉2, i.e. its encoding
enclosed by 2s that are used as separators.

INPUT Gates If Fg (a,b) = ai , we define:

tg := h0 . . .hd ai hd . . .h0 DM
g := {h0 . . .hd 1hd . . .h0}

If Fg (a,b) = bi , we define

tg := h0 . . .hd 1hd . . .h0 DM
g := {h0 . . .hd bi hd . . .h0}

We set DS
g := {hi . . .hd 0hd . . .hi ,hi . . .hd 1hd . . .hi | i ∈ [d ]}.

AND Gate We define the texts and the corresponding dictionaries as follows:

tg :=h0 . . .hd hd t1t2hd hd . . .h0

DM
g :={h0 . . .hd hd ,hd hd . . .h0}

DS
g :={hi . . .hd hd h0 . . .hi−1,hi−1 . . .h0h0 . . .hi−1,hi−1 . . .h0hd hd . . .hi | i ∈ [d ]}

OR Gate We define the text and the additional dictionaries for g as follows:

tg :=h0 . . .hd hd t1hd hd t2hd hd . . .h0

DM
g :={h0 . . .hd hd ,hd hd h0 . . .hd ,hd . . .h0hd hd . . .h0}

∪{h0 . . .hd hd h0 . . .hd ,hd . . .h0hd hd ,hd hd . . .h0}

DS
g :={hi . . .hd hd h0 . . .hi−1,hi−1 . . .h0hd hd h0 . . .hi−1,hi−1 . . .h0hd hd . . .hi , | i ∈ [d ]}
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5. CONDITIONAL LOWER BOUNDS FOR MEMBERSHIP

CORRECTNESS AND SIZE BOUND

Lemma 5.4. For all assignments a,b and gates g : Let r = h0, . . . ,hd = g be the trace of gate
g for formula F .

• tg (a) ∈L(h0 . . .hi−1(Dg (b))+hi−1 . . .h0) for all i ∈ [d ]. 1

• tg (a) ∉L(h0 . . .hi−1(Dg (b))+h j−1 . . .h0) for all i 6= j ∈ [0,d ]. 2

Proof. One can easily show the correctness of the first claim by a structural induction on
the output gate using the words for the skipping phase. Likewise we show the second case
by a structural induction on the output gate.

INPUT Gate The statement is true by definition of the dictionary.

AND Gate By assumption the claim is true for g1 and g2. But assume the claim is false
for g . We can only match the “prefix” hi . . .hd hd with the word hi . . .hd hd h0 . . .hi−1.
And analogously for the “suffix”. The joining part of t1t2 has to be matched by
some hk−1 . . .h0h0 . . .hk−1 for k ∈ [0, . . . ,d ] (possibly the empty sting). Hence, t1 ∈
L(h0 . . .hi−1(Dg (b))+hk−1 . . .h0) and t2 ∈L(h0 . . .hk−1(Dg (b))+h j−1 . . .h0). But from
i 6= j it follows that k 6= i or k 6= j and we have a contradiction.

OR Gate Again assume the claim is true for g1 and g2. We have to match the “prefix”
hi . . .hd hd with the word hi . . .hd hd h0 . . .hi−1. And analogously for the “suffix”. If
the joining part of t1hd hd t2 was matched by hk−1 . . .h0hd hd h0 . . .hk−1 for some
k ∈ [d ], the same proof as for the AND gate applies. Otherwise, hd . . .h0hd hd or
hd hd h0 . . .hd was used. Let it w.l.o.g. be the first one. But since i ∈ [0,d ] we have
i 6= d + 1 and hence the same argument as for the AND gate applies showing a
contradiction for t1.

Lemma 5.5 (Correctness of the Construction). For all assignments a,b and gates g :
Fg (a,b) = true ⇐⇒ tg (a) ∈L((Dg (b))+).

Proof. We proof the claim by an induction on the output gate.

INPUT Gate “⇒⇒⇒” Follows directly from the construction of the text and the dictionary.

INPUT Gate “⇐⇐⇐” Since the words in DS
g cannot match h0, a word from DM

g has to be
chosen. Since the text can only be matched by the word in the dictionary if the gate
evaluates to true, the result follows directly.

AND Gate “⇒⇒⇒” Fg (a,b) = true = Fg1 (a,b)∧Fg2 (a,b) ⇒ Fg1 (a,b) = true∧Fg2 (a,b) = true.
Hence, we can use D1 and D2 to match t1 and t2, respectively. The remaining parts
are matched by the words in DM

g .

1 A+ := (a1|a2| . . . |a|A|)+ where A is a set of word ai .
2h0h−1 and h−1h0 denote the empty string in this context.
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5.2. Patterns of Type |+|◦

AND Gate “⇐⇐⇐” If tg ∈ L(pg ), then the hd hd s in the text have to be matched. Since we
enumerated the gates, there are no other words than those in DM

g and DS
g that can

match this part of the text. Furthermore, we know that the first and last occurrence
of h0 is matched. Hence, the first and last trace has to be matched by words from
DM

g . It cannot be matched by word from other DM
g ′ since they all have g ′g ′ as part

of the words. Since the last hg1 hg1 in t1 and the first hg2 hg2 in t2 have to be matched
and this can only be done by words in D1 and D2, we have that the whole t1 and t2

were matched by the corresponding dictionary. Otherwise, we had a contradiction
to Lemma 5.4. This shows the correctness of the claim by the inductive hypothesis.

OR Gate “⇒⇒⇒” Fg (a,b) = Fg1 (a,b)∨Fg2 (a,b) = true. Assume w.l.o.g. that Fg1 (a,b) = true,
the other case is symmetric. By assumption t1 ∈L((D1)+). We match the prefix of
tg in the obvious way. We match the hd hd in the middle and the following h0 . . .hd

of t2 with the corresponding word from DM
g . By the first claim of the previous

lemma, we have t2 ∈L(h0 . . .hd (Dg )+hd . . .h0). Then we match the remaining suffix
hd . . .h0hd hd . . .h0 with the corresponding word from DM

g .

OR Gate “⇐⇐⇐” t ∈L((Dg )+) implies that the first and last h0 have to be matched.
(a) Assume the first was matched by h0 . . .hd hd . According to Lemma 5.4 the hd hd

in the middle must be matched by hd hd h0 . . .hd and not by a word in DS
g . But this

implies Fg1 (a,b) = true by the induction hypothesis since the words from Dg ∪D2 ⊇
DM

g ∪DS
g cannot be used to match substrings of t1 due to the occurrence of ĝ ĝ for

gates ĝ in Fg1 in the text t1.
(b) The first h0 of the text was matched by h0 . . .hd hd h0 . . .hd . Then the middle
hd hd must be matched by hd . . .h0hd hd to not contradict the lemma. But the same
lemma requires that the last h0 is matched by hd hd . . .h0 and hence the inductive
hypothesis gives us a satisfying assignment since only words from D2 could be
used.

LENGTH OF THE TEXT AND THE PATTERN

Lemma 5.6. We have the following size bounds:

• |tr | ∈O(sd log s) ⊆O(s2 log s)

• |Dr | ∈O(sd) ⊆O(s2)

• ∀x ∈ Dr : |x| ∈O(d log s) ⊆O(s log s)

Proof. The lemma follows directly from the encoding and the following observations:

• |tg | ≤ |t1|+ |t2|+O(d log s)

•
∣∣∣DM

g

∣∣∣ ∈O(1) and
∣∣∣DS

g

∣∣∣ ∈O(d)

• Dr =
⋃

gates g DM
g ∪DS

g
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5.2.2 Final Reduction

Let A = {a(1), . . . , a(n)} be the first set and B = {b(1), . . . ,b(m)} be the second set of half-
assignments.

DEFINING THE OUTER OR By the structure of the pattern it is very easy to select one
specific assignment b( j ). Furthermore, it should be clear that the text should be a concate-
nation of the t(a(i ))s separated by some special symbol. But it is not completely trivial
how to match all the remaining symbols of the text. We solve this problem by blowing-up
the text and the pattern such that we can distinguish between the following three states
matching periods/states: (a) checking if two assignments satisfy the formula (b) ignoring
the prefix (symbols before the actual match), and (c) ignoring the suffix (symbols after
the actual match). Furthermore, a change between these states is only possible at the
boundaries of the t (a(i ))s. By the design of the text we force the pattern to go through all
three states.

Definition 5.7 (Blow-Up of a Text). Let t = t1 . . . tn be a text of length n and u be some
arbitrary string. We define

←−
t

u
:= ut1ut2 . . .utn . For a set of texts W = {w1, . . . , wk } we define←−

W
u

:= {←−w1
u

, . . . ,←−wk
u

}.

Using this we define the final text and pattern as follows:

t :=βγδ
n⊙

i=1

(←−−−−
t (a(i ))

αβγ

αβγδ

)
αβ

p :=p+
1 | p+

2 | · · · | p+
m

p j :=βγxα |βγδ |
←−−−−−−
Dr (b( j ))

αβγ

|αβγδαβ | γxαβ x ∈ {0,1,2,δ}

CORRECTNESS AND SIZE BOUND By proving the correctness and completeness of this
final construction and its size bound we finish the proof of Theorem 5.3.

Lemma 5.8. If there are a(k) and b(l ) such that F (a(k),b(l )) = true, then t ∈L(p).

Proof. We show that we can match t to p+
l . We match the prefix of t and the first k −1

groups of the text by repetitions of βγxα for all values x ∈ {0,1,2,δ}. But the last three
symbols of the k −1th group are matched by βγδ. This is possible since before and thus
after each information carrying symbol (i.e. 0,1,2) there is an αβγ. Then by Lemma 5.5
and the definition of the blow-up we get

←−−−−
t (a(k))

αβγ

∈L
(←−−−−−

Dr (b(l ))
αβγ

)+
The following αβγδαβ is matched by the corresponding pattern. The remaining symbols
and groups are matched in a straight forward way by repetitions of γxαβ.

Lemma 5.9. If t ∈L(p), then there are a(k) and b(l ) such that F (a(k),b(l )) = true.
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5.2. Patterns of Type |+|◦

Proof. We can already fix the l due to the structure of the pattern. There is no way to
match the text just with words βγxα or γxαβ. Thus, we must have made use of the words
βγδ and αβγδαβ. But this application is only possible at the boundary of two text groups.
Hence, let k be the first group that is not matched by βγxα or γxαβ. Observe that we
cannot directly switch to an application of the word γxαβ since this is only possible if
there is a δ. Therefore, we get

←−−−−
t (a(k))

αβγ

∈L
(←−−−−−

Dr (b(l ))
αβγ

)+
for some k ∈ [n]. But since the αβγ always match to each other, we can ignore them and
get

t (a(k)) ∈L
((

Dr (b(l )
)+)

proving the claim by Lemma 5.5.

Corollary 5.10. The final text has length O(nsd log s) ⊆O(ns2 log s) and the pattern has
size O(msd 2 log s) ⊆O(ms3 log s).

�

Remark. At a first glance it seems that this reduction can directly be transferred to the
pattern matching case without using the blow-up since only a substring of t has to be
matched. But actually this is not possible.

Indeed the encoding of the formula can also be done for pattern matching. But our
construction inherently depends on the fact that the whole text has to be matched and for
pattern matching we are only interested whether some substring of the text is matched.
Although it is possible to show Lemma 5.8 for the matching case, where we replace the L
byM, the other direction would not work since we cannot “force” the pattern to match the
whole string. We could show a lower bound for patterns of type ◦|+|◦. But this hardness
result is also implied by the lower bound for ◦|+ given in Section 4.6.
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Chapter

6
Conclusion

6.1 The Results

PATTERN MATCHING In the last chapters we have taken a very fine-grained look at
pattern matching and the membership problem. We have shown tighter conditional
lower bounds based on FPH for the only quadratic time pattern of depth two, ◦?. Like-
wise, we have proven that one cannot shave off more than a constant number of log-
factors from the quadratic time approach for four pattern types of depth three (◦|◦, ◦+◦,
◦+|, and ◦|+). In [BT09] a general algorithm was shown solving the problem in time
O(nm polyloglogn/log3/2 n). Hence we can see our results as proof that this algorithm is
optimal up to a constant number of log-factors. Furthermore, this implies that there is
no need to search for specialized algorithms that perform better on these special pattern
types. This is again due to the fact that the general algorithm would only be slower by a
constant number of log-factors. In contrast, we have shown for the two remaining hard
pattern types of depth three (|◦| and |◦+) that this is possible by an application of the
polynomial method. All of this does of course not apply to the patterns with near linear
time algorithms.

Actually one could improve the constant for the number of log-factors even further
by defining texts and patterns that are completely tailored for each specific pattern type.
Nevertheless, the number of log-factors stays constant and thus these reductions are not
considered here.

Based on our results we could state the optimized algorithm for pattern matching
and membership: Check the type of the pattern. Decide whether the pattern is easy and
then use the fast algorithm for the instance. Since this decision only depends on the outer
operation of the pattern, this can be checked quickly. If there is no fast algorithm for this
type, the general algorithm for the problem is used.

In Figure 6.1 we give an overview over the pattern types for pattern matching and their
running times. While the results in red are new (tighter) results shown in this thesis, the
results in blue are refinements based on the result we have shown. All types at the leaves
have no super-poly-logarithmic improvement unless FPH is false. Of course except for
the patterns that can be simplified by the observations in the introduction or are trivial.
By this the complexity of all patterns of depth larger than three can be reduced to one
of these patterns. Hence, we obtain a full dichotomy for pattern matching. Except for
patterns of type |◦| and |◦+ this classification is also tight up to log-factors.
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FIGURE 6.1: Running times for pattern matching assuming FPH.

MEMBERSHIP For membership we are in quite a similar situation. Based on the reduc-
tions for pattern matching we showed tighter conditional lower bounds for many patterns
that have no sub-quadratic time algorithm. We also gave a reduction for one pattern of
depth four which is a generalization of the word break problem. The results are illustrated
in the Figures 6.3, 6.4, and 6.2. One can easily check that for almost all hard pattern types
occurring in the figures the current algorithm as mentioned in [BT09] is optimal. The only
exceptions are patterns of type +|◦+ and +|◦|. We address this in the next section.

As for pattern matching, this rules out faster algorithms for these hard pattern types.
Moreover, the general algorithm is also applicable for non-homogenous patterns of un-
bounded depth while all lower bounds are for homogeneous patterns of bounded depth.
But since the upper and lower bounds match up to log-factors, the general algorithm is
well suited also for these hard patterns and can be used instead.
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FIGURE 6.2: Running times for membership with types starting with + assuming FPH.

6.2 Open Problems and Further Questions

TIGHT DICHOTOMY FOR MEMBERSHIP As mentioned above it remains an open question
whether one can show a tighter lower bound for membership with patterns of type +|◦+
and +|◦|. A quite interesting observation is that both types combine two intermediate
problems: The first three operators, i.e. +|◦, represent the word break problem which
has a Θ(nm1/3 +m) time algorithm for membership. This is also the reason why we
actually have to consider these patterns. The last three operators represent the pattern
types for which we showed faster algorithm in Chapter 3. Even though these patterns
are easy for membership, they are hard for pattern matching but still allow super-poly-
logarithmic improvements. Nevertheless, the resulting patterns of depth four have no
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FIGURE 6.3: Complexity for membership with types starting with ◦ and ? assuming FPH.

strongly sub-quadratic time algorithms as shown in [BGL17], unless SETH is false. But
since no sub-type rules out super-poly-logarithmic improvements we can still hope for
faster algorithms. One possible way could be a modification of the word break algorithm
using the polynomial method for |◦| and |◦+ with small sub-patterns while the large
problems are processed sequentially before putting everything together.

Conversely it seems challenging to show a lower bound based on FORMULA-PAIR for
these pattern types. Recall that for such a reduction we have to encode one set of half-
assignments by the pattern. For the reductions in Chapter 4 we did this by concatenating
all assignments (with corresponding gadget) such that the text and the pattern where
aligned in an appropriate way if there was a satisfying assignment. For the pattern
type |+|◦ of depth four it was even easier to do this because we could use the outer
alternative as outer OR. But for the two remaining pattern types the outer operation is a
Kleene Plus and thus we have to use a different approach. It should feel intuitive that the
alternative following the Plus is used to encode the outer OR when doing the reduction.
But then we have to ensure that words corresponding to different assignments are not
used simultaneously. All of these observations lead to the conjecture that membership

with patterns of type +|◦+ and +|◦| can be solved in timeΘ(nm/2Θ(
p

logmin(n,m))).

CHANGING THE SIZE OF THE ALPHABET All our reductions for the lower bounds used a
constant sized alphabet. This implies that the problems are also hard for non-constant
sized alphabets. But none of the alphabets we defined was binary. Thus, it remains open
to check whether the same bounds can be achieved by only using the symbols 0 and 1 or
wether larger alphabets are needed.

While in this situation we wanted to reduce the size of the alphabet s, we also can
consider a larger alphabet for the algorithms we gave. The final algorithm depends on
the fact that the size of the alphabet is small because we split the pattern into large
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FIGURE 6.4: Running times for membership with types starting with | assuming FPH.

and small sub-patterns. While the polynomial method for |◦+ also allows alphabets of

size s ∈O(n), the other algorithm requires s ∈ o(2Θ(
p

logn)) to still give an improvement.
Hence, it remains an open question to check whether the same asymptotic bounds can
be achieved with large alphabets, i.e. s ∈O(n).
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6. CONCLUSION

ROBUSTNESS OF HOMOGENEOUS PATTERNS We know from [BI16] that ◦+-pattern match-
ing can be solved in near linear time. But the similar ◦?-pattern matching requires
quadratic time and even super-poly-logarithmic factors cannot be shaved off. This is
somewhat surprising since pattern of type ◦+are a special case of patterns of type ◦?.
Thus, it is an interesting question how robust our definition of homogenous pattern is
with regard to changes of the operations. That is, how many Kleene Plus can we change to
a Kleene Star such that pattern matching is still solvable in near linear or at least strongly
sub-quadratic time. Likewise one could think of similar changes for the other pattern
types. But this has to be addressed in some further work.
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Appendix

A
Homogeneous Patterns of Unbounded
Depth

In Chapter 4 we have seen several reductions from FORMULA-PAIR to pattern matching
with homogeneous patterns of bounded depth. As already mentioned, the first lower
bound for pattern matching ruling our log-factor improvements in [AB18] used non-
homogeneous patterns of unbounded. In this appendix we show some small modifications
of the result in Appendix E of the full version of [AB18] that transform the pattern into a
homogeneous pattern of unbounded depth. Hence, we use the same notation as in this
paper in the following.

The encoding of the INPUT and AND gate stays the same since their encoding does
not increase the depth of the pattern nor change its type. Instead we change the encoding
of the OR gate and the outer OR.

OR GATES We first transform (0|1)∗ into the homogeneous expression (0∗1∗)∗. One can
easily prove that both patterns describe the same language. Based on this we change the
definition of the texts and the patterns such that they are of type ◦?◦?. . . .

tg :=§t1#(h′)t2§

pg :=§(p1#(h′)(0∗1∗§∗)∗)∗((0∗1∗§∗)∗#(h′)p2)∗§

For the correctness the same arguments as in the original proof hold. Furthermore, we
notice that by introducing the fresh symbol § we force the pattern to match some text.
Otherwise we could choose the empty text as the matched substring. But by the § at least
one of the sub-patterns has to match. We are sure that exactly one sub-pattern is matched
because the #(h′) appears only once in the text and the two § in the beginning and the end
have to be matched. Since the text contains the symbol §, we have to be able to match
it and add it therefore to the alternative we transformed into a homogeneous pattern as
mentioned in the beginning.

OUTER OR For the outer OR, we use a similar approach as for the OR.

t :=#(H)$t (a(1))$#(H)$ · · ·$#(H)$t (a(n))$#(H)

p :=#(H)($p(b(1))$)∗($p(b(2))$)∗ · · · ($p(b(n))$)∗#(H)

We first notice, that the trivial string ε cannot be matched because the #(H) at the be-
ginning and the end of the pattern have to match some #(H) in the text. Thus, at least
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A. HOMOGENEOUS PATTERNS OF UNBOUNDED DEPTH

one of the $p(b(i ))$ has be match text since the #(H) are not consecutive. Due to the new
symbols, the $p(b(i ))$ can only match some $t(a( j ))$. Furthermore, at most one of the
$p(b(i ))$ can be matched since there are just two $ between two #(H ). The same argument
shows that each repetition is taken at most once. Otherwise the second repetition would
behave as a new $p(b(i ))$.

FINAL REMARKS One can easily check that the pattern actually has type ◦?◦? . . . . This is
because consecutive concatenations can be collapsed into one concatenation until the
next type is a ?. Thus the last unproven claim of Theorem 4.1 follows. �
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Abbreviations and Notations

FPH FORMULA-PAIR HYPOTHESIS

FSH FORMULA-SAT HYPOTHESIS

SETH STRONG EXPONENTIAL TIME HYPOTHESIS

B The boolean values true and false, identified with 0 and 1 if necessary.

d(F ) Depth of the formula F , cf. Definition 2.20.

ε Empty string consisting of zero symbols.

Fg The sub-formula of F rooted at gate g .

F2 Finite field with 2 elements.

L(q) Language accepted by the pattern q , cf. Definition 2.1

M(q) The language of words with a substring matched by q , cf. Definition 2.3.

REΣ The class of regular expressions over alphabet Σ, cf. Definition 2.1.

REΣ(T ) Class of homogeneous pattern of type T over Σ, cf. Definition 2.6.

s Size of the alphabet Σ

s Size of a formula F

Σ Alphabet containing s symbols.

JAK Returns true/1 if the expression A is correct and false/0 otherwise.

〈i 〉 Binary encoding of integer i where the number of bits is clear from the context.

〈i 〉 j The j th bit of the binary encoding of i with j = 0 as the least significant bit.

[n] The set of the integers {1,2, . . . ,n}.

[n,m] The set of the integers {n,n +1, . . . ,m −1,m}.

?
t The starred version of a text as defined in Definition 4.8.

t
τ

The barred version of a text as defined in Definition 4.14.
←−
t
β

The blow-up of a text with text string β as in Definition 5.7.
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