Tight Bounds for Regular Expression Pattern Matching and Membership

Master's Seminar

Philipp J. Schepper

January 16, 2020

Department of Computer Science, Saarland University - IMPRS-CS, MPI Informatik

Motivation

Regular Expressions are used for

- Text analysis and manipulation (e.g. unix tools grep and sed)
- Network analysis
- Searching for proteins in DNA sequences
- Human-computer interaction

Definition (Membership)

Input: Text t of length n and pattern p of size m.

Question: Does p generate t, i.e. $t \in \mathcal{L}(p)$?

Definition (Pattern Matching)

Question: Does *p* generate some *substring* of *t*,

i.e. $t \in \mathcal{M}(p) \coloneqq \Sigma^* \mathcal{L}(p) \Sigma^*$?

How fast can these problems be solved? $\mathcal{O}(nm)!$ o(nm)? $\Omega(nm)?$

1

Agenda

- 1. Introduction and Results
- 2. Lower Bounds
- 3. Upper Bounds
- 4. Conclusion

Introduction and Results

Recap: Regular Expressions

Name	Regular	Language
	Expression	
Symbol	σ	$\mathcal{L}(\sigma) \coloneqq \{\sigma\}$
Alternative	$(p \mid q)$	$\mathcal{L}(p \mid q) \coloneqq \mathcal{L}(p) \cup \mathcal{L}(q)$
Concatenation	$p \circ q$	$\mathcal{L}(p \circ q) \coloneqq \{tu \mid t \in \mathcal{L}(p) \land u \in \mathcal{L}(q)\}$
Kleene Plus	$ ho^+$	$\mathcal{L}(p^+) \coloneqq \bigcup_{i=1}^{\infty} \mathcal{L}(p \circ \ldots \circ p)$
		i
Kleene Star	p*	$\mathcal{L}(ho^*) \coloneqq \{arepsilon\} \cup \mathcal{L}(ho^+)$

 $\it n$ text length, $\it m$ pattern size (=number of operators and symbols)

Current Results

Upper bounds

- Classical (Thompson 1968): $\mathcal{O}(nm)$
- Myers 1992: $\mathcal{O}(nm/\log n)$
- Bille and Thorup 2009: $\bar{\mathcal{O}}(nm/\log^{3/2}n)$ ($\bar{\mathcal{O}}$ hides poly $\log\log n$ factors)

Lower bounds

- Backurs and Indyk 2016: $\Omega((nm)^{1-\epsilon})$, assuming SETH
- Abboud and Bringmann 2018: $\Omega(nm/\log^{7+\epsilon}n)$, assuming FSH
- \rightarrow Matching lower and upper bound up to a constant number of log-factors for the ${\bf general}$ case!

What about "easier" patterns? What is an "easy" pattern?

Homogeneous Patterns

Represent the patterns as trees:

- Leaves are labeled with symbols from Σ
- Inner nodes are labeled with operations $(|, \circ, +, \star)$

Definition (Homogeneous Patterns)

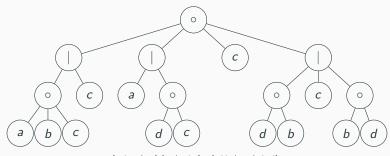
A pattern is *homogeneous* if for each level of the tree the inner nodes are labeled with the same operation. The *type* is the sequence of operators on the longest path path from the root to the deepest leaf.

5

Homogeneous Patterns - Example i

Definition (Homogeneous Patterns)

A pattern is *homogeneous* if for each level of the tree the inner nodes are labeled with the same operation. The *type* is the sequence of operators on the path from the root to the deepest leaf.



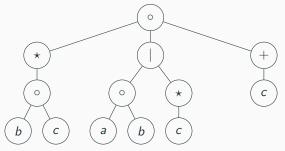
 $(abc \mid c)(a \mid dc)c(db \mid c \mid bd)$:

Homogeneous pattern of type \circ | \circ and depth 3.

Homogeneous Patterns - Example ii

Definition (Homogeneous Patterns)

A pattern is *homogeneous* if for each level of the tree the inner nodes are labeled with the same operation. The *type* is the sequence of operators on the path from the root to the deepest leaf.



 $(bc)^*(ab \mid c^*)c^+$: Not a homogeneous pattern!

Current Results

General Patterns

 $\bar{\mathcal{O}}(nm/\log^{3/2}n)$ and $\Omega(nm/\log^{7+\epsilon}n)$, assuming FSH

Homogeneous Patterns

Several common problems can be formulated as problems with homogeneous pattern types (e.g. dictionary, superset and string matching). And are solvable in $\mathcal{O}(n\log^2 m + m)$ time.

Dichotomy for homogeneous types [BI16], [BGL17]

- It suffices to analyse few pattern types of constant depth
- For "easy" patterns: strongly sub-quadratic time algorithms
- For "hard" patterns: $\Omega((nm)^{1-\epsilon})$ lower bound, assuming SETH

Questions: Does the general lower bound transfer to the hard pattern? Are there super-poly-logarithmic improvements as for APSP and OV?

Satisfiability Problems i

SETH rules out **polynomial** improvements.

We want to rule out **log-factor** improvements!

 \rightarrow We need a stronger assumption!

FORMULA-SAT (Abboud and Bringmann 2018)

Input: A De Morgan formula F of size s on n variables.

Task: Check whether there is a satisfying assignment for F.

De Morgan Formula

A node labeled tree. Each inner node is labeled with AND or OR. Each leaf is labeled with a variable or its negation. Size = number of leaves

FORMULA-SAT HYPOTHESIS (FSH) (Abboud and Bringmann 2018)

FORMULA-SAT on De Morgan formulas of size $s=n^{3+\Omega(1)}$ cannot be solved in $\mathcal{O}(2^n/n^\epsilon)$ time, for some $\epsilon>0$, in the Word-RAM model.

Satisfiability Problems ii

Definition (FORMULA-PAIR (Abboud and Bringmann 2018))

Input: A monotone De Morgan formula F with s inputs and

 $A, B \subseteq \{0, 1\}^{s/2}$ of size n and m, respectively.

Task: Check whether there are $a \in A$, $b \in B$ such that F(a, b) = true.

FORMULA-SAT and FORMULA-PAIR are related by writing down all half-assignments explicitly and we can ensure each input is used exactly once.

Consequence of FORMULA-SAT HYPOTHESIS:

FORMULA-PAIR HYPOTHESIS (FPH)

For all $k \geq 1$: For a monotone De Morgan formula F of size s and sets $A, B \subseteq \{0,1\}^{s/2}$ of n half-assignments each, FORMULA-PAIR cannot be solved in time $\mathcal{O}(n^2s^k/\log^{3k+2}n)$, in the Word-RAM model.

Our Results

Before:

In general: $\bar{\mathcal{O}}(nm/\log^{3/2}n)$

For "hard" homogeneous patterns: $\Omega((nm)^{1-\epsilon})$, assuming SETH.

New bounds assuming FPH:

	0*, 0+0, 0 0, 0+ , 0 +	0 , 0+	+ 0
Pattern matching	$\Omega\left(\frac{nm}{\log^{31}n}\right)$	$\frac{nm}{2^{\Theta\left(\sqrt{\log n}\right)}}$	$\Theta(n+m)$
Membership		$\Theta(n+m)$	$\Omega\left(\frac{nm}{\log^{17} n}\right)$

- $-2^{\Theta(\sqrt{\log n})} \in \omega(\operatorname{poly}\log n)$:
 - Currently fastest algorithm and best we can hope for under SETH.
- For "ultra-hard" pattern types: The general algorithm is optimal up to a constant number of log-factors.

Tight classification for these pattern types (up to log-factors).

Lower Bounds

General Idea

Definition (FORMULA-PAIR)

Input: A monotone De Morgan formula F with s inputs and

 $A, B \subseteq \{0, 1\}^{\ell}$ of size n and m, respectively.

Task: Check whether $\exists a \in A, b \in B : F(a, b) = \text{true}.$

Reduce **FORMULA-PAIR** to **pattern matching** with a text t and pattern p of a specific type:

$$(\exists a \in A, b \in B : F(a, b) = true) \iff t \in \mathcal{M}(p)$$

We first encode the formula such that

$$F(a, b) = \text{true} \iff t(a) \in \mathcal{L}(p(b)) \quad \forall a \in A, b \in B$$

Encode the INPUT, AND and OR gates of the formula inductively.

Encoding the Formula i

Focus on patterns with type $\circ+\circ$: $ab(bc)^+b^+(cd)^+$

INPUT Gate
$$F_g(a, b) = a_i$$

if
$$a_i = 1$$
 $p_g := 0a_i 1$ $p_g := 0^+ 11^+$ $p_g := 0^+ 11^+$ $p_g := 0^+ 11^+$

For
$$F_g(a, b) = b_i$$
 define: $t_g := 011$ $p_g := 0^+b_i1^+$

AND Gate
$$F_{g}(a, b) = F_{g_1}(a, b) \wedge F_{g_2}(a, b)$$

Define separator gadget $G := 2\langle g \rangle 2$.

Need universal text u_g and pattern q_g for OR gate.

Encoding the Formula ii

OR Gate
$$F_g(a, b) = F_{g_1}(a, b) \lor F_{g_2}(a, b)$$

 $t_g := (u_1Gu_2)G(u_1Gu_2)G(t_1Gt_2)G(u_1Gu_2)G(u_1Gu_2)$
 $p_g := (u_1Gu_2G)^+(p_1Gq_2)G(q_1Gp_2)(u_1Gu_2G)^+$
 $u_g := (u_1Gu_2)G(u_1Gu_2)G(u_1Gu_2)G(u_1Gu_2)G(u_1Gu_2)$
 $q_g := (u_1Gu_2)G(u_1Gu_2)G(q_1Gq_2)G(u_1Gu_2)G(u_1Gu_2)$

Lemma (Size bound for the final encoding)

 $|u_r|, |t_r|, |p_r|, |q_r| \in \mathcal{O}(5^{d(F)}s \log s)$, with r as root of F.

Proof.

$$\begin{split} |p_g| &\in \mathcal{O}(|u_g|) = \mathcal{O}(|t_g|) = \mathcal{O}(|q_g|). \\ \text{By definition: } |u_g| &\leq 5|u_1| + 5|u_2| + \mathcal{O}(\log s) \\ \text{Inductively over the } d(F_g) \text{ levels of } F_g \colon |u_g| &\leq \mathcal{O}(5^{d(F_g)} s \log s). \end{split}$$

Outer OR

Definition (FORMULA-PAIR)

Input: A *monotone* De Morgan formula F, where each input is used exactly once, $A, B \subseteq \{0, 1\}^{\ell}$ of size n and m.

Task: Check whether $\exists a \in A, b \in B : F(a, b) = \text{true}.$

$$t := \bigcup_{a \in A} (\gamma \gamma u_r \gamma u_r \gamma t(a) \gamma u_r \gamma u_r \gamma u_r \gamma u_r)$$

$$p := \gamma u_r \gamma u_r \gamma u_r \gamma u_r \underbrace{\bigcirc}_{b \in B} (\gamma^+ (u_r \gamma)^+ u_r \gamma^+ q_r \gamma p(b) \gamma (u_r \gamma)^+ q_r) \gamma u_r \gamma u_r \gamma u_r \gamma u_r$$

Lemma (Correctness)

$$(\exists a \in A, b \in B : F(a, b) = true) \iff t \in \mathcal{M}(p)$$

The Lower Bound

- Text length and pattern size is $\mathcal{O}(n5^d s \log s) \subseteq \mathcal{O}(n5^s s \log s)$.
- We can reduce the depth of a formula by increasing its size: $d \to d' = \mathcal{O}(\log s)$ and $s \to s' = \mathcal{O}(s^2)$. (e.g. Bonet and Buss 1994)
- We obtain text length and pattern size of $\mathcal{O}(ns^{15})$.
- Assume a $\mathcal{O}(NM/\log^{92}N)$ algorithm for $\circ+\circ$ -pattern matching:

$$\mathcal{O}\left(\frac{ns^{15} \cdot ns^{15}}{\log^{92}(ns^{15})}\right) \subseteq \mathcal{O}\left(\frac{n^2s^{30}}{\log^{92}n}\right)$$

FORMULA-PAIR HYPOTHESIS (FPH)

For all $k \geq 1$: For a monotone De Morgan formula F of size s and sets $A, B \subseteq \{0,1\}^{s/2}$ of n half-assignments each, FORMULA-PAIR cannot be solved in time $\mathcal{O}(n^2s^k/\log^{3k+2}n)$, in the Word-RAM model.

Reducing Pattern Matching to Membership

We can reduce pattern matching to membership for the pattern types for which we showed improved lower bounds.

Example for patterns of type $\circ+|$:

- $t' \coloneqq \sigma t \sigma$ where $\sigma \in \Sigma$
- $\ p' \coloneqq \Sigma^+ p \Sigma^+ = (\sigma_1 \mid \sigma_2 \mid \ldots \mid \sigma_{\mathfrak{s}})^+ p (\sigma_1 \mid \sigma_2 \mid \ldots \mid \sigma_{\mathfrak{s}})^+$

$$t \in \mathcal{M}(p) \implies t' \in \mathcal{L}(p')$$

The first Σ^+ matches initial σ and not matched prefix of t.

Analogous for the second Σ^+ .

$$t' \in \mathcal{L}(p') \implies t \in \mathcal{M}(p)$$

The two Σ^+ match at least the initial and final σ .

Thus, p has to match some substring of t (possibly the empty string).

Upper Bounds

The Polynomial Method

- Originally used for circuit lower bounds (Razborov 1987 and Smolensky 1987)
- Method to transform boolean circuits into polynomials
- Adopted by Williams in 2014 for improved algorithm for APSP
- Yields super-poly-logarithmic runtime improvements
- Idea: Solve the task for many small sub-problems in parallel

ORTHOGONAL VECTORS (OV)

Input: Sets $U, V \subseteq \{0, 1\}^d$ of n vectors each.

Question: Are there $u \in U$, $v \in V$ such that $\langle u, v \rangle = 0$?

Lemma (Chan and Williams 2016)

For $d = 2^{\Theta(\sqrt{\log n})}$ OV can be solved in time $\mathcal{O}(n^2/2^{\Theta(\sqrt{\log n})})$ deterministically.

Fast Algorithm

Focus on patterns with type $|\circ|$: $[(a \mid b)(b \mid c)d] \mid [ab(a \mid c \mid d)] \mid [bd]$ Main observation: Patterns can be split into independent sub-patterns!

- (a) Define threshold $f \in 2^{\Theta(\sqrt{\log n})}$
- (b) Split p into large (matching > f symbols) and small sub-patterns
- (c) Solve each of the $\leq k = m/f$ large sub-patterns of type \circ | with the near-linear time algorithm:

$$\mathcal{O}\left(\sum_{i=1}^{k} n \log^2 m_i + m_i\right) \subseteq \mathcal{O}\left(\frac{m}{f} n \log^2 n + m\right) = \mathcal{O}\left(\frac{nm}{2^{\Theta\left(\sqrt{\log n}\right)}}\right)$$

(d) Reduce small sub-patterns to OV with dimension $d = 2^{\Theta(\sqrt{\log n})}$:

$$\mathcal{O}\left(\frac{nm}{2^{\Theta\left(\sqrt{\log n}\right)}}\right)$$

Small Sub-Patterns

Assume all sub-patterns match exactly f symbols (else pad with Σ s).

Check whether there is a sub-pattern q and an offset $i \in [n]$ such that:

- Use all length f substrings of t as one set of vectors
- Use sub-patterns as the other set of vectors
- Encode orthogonality using characteristic vector for Σ :

$$t = a p = a \mid b \longrightarrow (1, 0, 0) \longrightarrow (0, 0, 1)$$

$$\Sigma = \{a, b, c\}$$

- n text-vectors and $\leq m$ pattern-vectors
- dimension $d = f \cdot |\Sigma| \in 2^{\Theta(\sqrt{\log n})}$ if $|\Sigma| = \mathcal{O}(1)$

Conclusion

Conclusion

Before: Upper bound: $\bar{\mathcal{O}}(nm/\log^{3/2} n)$

Lower bound: $\Omega((nm)^{1-\epsilon})$, assuming SETH.

Now:

Improved matching upper and lower bounds for homogeneous pattern types up to a constant number of log-factors. \to A tight dichotomy.

Assume FPH and SETH	o+ , o +, o+o, o o, o∗	0 , 0+	+ 0	+ 0 , + 0+
Pattern matching	$\Theta\left(\frac{nm}{\operatorname{poly}\log n}\right)$	$\frac{nm}{2^{\Theta\left(\sqrt{\log n}\right)}}$	$\Theta(n+m)$	same as $ \circ $, $ \circ+$
Membership		$\Theta(n+m)$	$\Theta\left(\frac{nm}{\operatorname{poly}\log n}\right)$	$\frac{nm}{2^{\Theta\left(\sqrt{\log n}\right)}}$

