
Computing Generalized Convolutions
Faster Than Brute Force

IPEC 2022

Barış Can Esmer1 Ariel Kulik1 Dániel Marx1

Philipp Schepper1 Karol Węgrzycki2

1 CISPA Helmholtz Center for Information Security, Germany
2 Saarland University and Max Planck Institute for Informatics, Saarbrücken, Germany

September 7, 2022

Motivation
Convolutions are used in parameterized and exact algorithms for
Hamiltonian Cycle,
Feedback Vertex Set,
Steiner Tree, . . .

Common application:
Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:
(Generalized) Subset Convolution
Cover Product
XOR Product, . . .

Difficulty:
Normally each problem needs a separate type of convolution.

Goal:
Unify the convolution procedures under one umbrella.

2/11

Motivation
Convolutions are used in parameterized and exact algorithms for
Hamiltonian Cycle,
Feedback Vertex Set,
Steiner Tree, . . .

Common application:
Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:
(Generalized) Subset Convolution
Cover Product
XOR Product, . . .

Difficulty:
Normally each problem needs a separate type of convolution.

Goal:
Unify the convolution procedures under one umbrella.

2/11

Motivation
Convolutions are used in parameterized and exact algorithms for
Hamiltonian Cycle,
Feedback Vertex Set,
Steiner Tree, . . .

Common application:
Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:
(Generalized) Subset Convolution
Cover Product
XOR Product, . . .

Difficulty:
Normally each problem needs a separate type of convolution.

Goal:
Unify the convolution procedures under one umbrella.

2/11

Motivation
Convolutions are used in parameterized and exact algorithms for
Hamiltonian Cycle,
Feedback Vertex Set,
Steiner Tree, . . .

Common application:
Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:
(Generalized) Subset Convolution
Cover Product
XOR Product, . . .

Difficulty:
Normally each problem needs a separate type of convolution.

Goal:
Unify the convolution procedures under one umbrella.

2/11

Motivation
Convolutions are used in parameterized and exact algorithms for
Hamiltonian Cycle,
Feedback Vertex Set,
Steiner Tree, . . .

Common application:
Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:
(Generalized) Subset Convolution
Cover Product
XOR Product, . . .

Difficulty:
Normally each problem needs a separate type of convolution.

Goal:
Unify the convolution procedures under one umbrella.

2/11

Convolutions
Classical convolution:
For two functions g; h : Z→ Z this is

(g ∗ h)(c) :=
X
a

g(a) · h(c − a) =
X
a+b=c

g(a) · h(b) ∀ c ∈ Z:

We do not study this!
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.

In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.

For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Classical convolution:
For two functions g; h : Z→ Z this is

(g ∗ h)(c) :=
X
a

g(a) · h(c − a) =
X
a+b=c

g(a) · h(b) ∀ c ∈ Z:

We do not study this!

Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.

In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.

For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.

In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.

For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys.

=⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.

In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.

For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.

In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.

For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.

In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.
For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.
In: Two functions g; h : Dn → Z.

Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.
For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.
In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z,

defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.
For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.
In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.

For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Convolutions
Cover Product:
Let S be a set. For two functions g; h : 2S → Z, the cover product is

(g ∗CP h)(C) :=
X

A∪B=C

g(A) · h(B) ∀C ⊆ S:

Conditions at the sums varys. =⇒ Use a more general definition.

Definition (f -Convolution (van Rooij 2021))

Fix: A finite domain D and a function f : D ×D → D.
In: Two functions g; h : Dn → Z.
Out: The f -Convolution of g and h, denoted by (g ~f h) : Dn → Z, defined as

(g ~f h)(v) :=
X

u;w∈Dn

s.t. v=f (u;w)

g(u) · h(w) ∀ v ∈ Dn:

Here, f (u; v) denotes the coordinate-wise application of f for two vectors u; v ∈ Dn.
For Cover Product we set D = {0; 1} and f as addition with maximum of 1.

3/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

Only for special cases faster algorithms are known.

Theorem (van Rooij 2021, Umans 2019 + Yates 1937)

f -Convolution can be solved
in time |D|n · nO(1) if f is addition (with maximum or modulo), or maximum, and
in time |D|!·n=2 · nO(1) if f is a finite-group operation
with ! < 2:373 being the matrix-multiplication exponent.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

4/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

Only for special cases faster algorithms are known.

Theorem (van Rooij 2021, Umans 2019 + Yates 1937)

f -Convolution can be solved
in time |D|n · nO(1) if f is addition (with maximum or modulo), or maximum, and
in time |D|!·n=2 · nO(1) if f is a finite-group operation
with ! < 2:373 being the matrix-multiplication exponent.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

4/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

Only for special cases faster algorithms are known.

Theorem (van Rooij 2021, Umans 2019 + Yates 1937)

f -Convolution can be solved
in time |D|n · nO(1) if f is addition (with maximum or modulo), or maximum, and
in time |D|!·n=2 · nO(1) if f is a finite-group operation
with ! < 2:373 being the matrix-multiplication exponent.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

4/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

Example for |D| = 6:

Naive algorithm: |D|2n · nO(1) = 36n · nO(1)

Our result: (56 |D|
2)n · nO(1) = 30n · nO(1)

Main idea: “Reduce” f -Convolution to addition with modulo.
1 Find a small cyclic partition of the function f .
2 Give a general algorithm based on cyclic partitions to compute the convolution.

5/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

Example for |D| = 6:
Naive algorithm: |D|2n · nO(1) = 36n · nO(1)

Our result: (56 |D|
2)n · nO(1) = 30n · nO(1)

Main idea: “Reduce” f -Convolution to addition with modulo.
1 Find a small cyclic partition of the function f .
2 Give a general algorithm based on cyclic partitions to compute the convolution.

5/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

Example for |D| = 6:
Naive algorithm: |D|2n · nO(1) = 36n · nO(1)

Our result: (56 |D|
2)n · nO(1) = 30n · nO(1)

Main idea: “Reduce” f -Convolution to addition with modulo.
1 Find a small cyclic partition of the function f .
2 Give a general algorithm based on cyclic partitions to compute the convolution.

5/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

Example for |D| = 6:
Naive algorithm: |D|2n · nO(1) = 36n · nO(1)

Our result: (56 |D|
2)n · nO(1) = 30n · nO(1)

Main idea: “Reduce” f -Convolution to addition with modulo.

1 Find a small cyclic partition of the function f .
2 Give a general algorithm based on cyclic partitions to compute the convolution.

5/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

Example for |D| = 6:
Naive algorithm: |D|2n · nO(1) = 36n · nO(1)

Our result: (56 |D|
2)n · nO(1) = 30n · nO(1)

Main idea: “Reduce” f -Convolution to addition with modulo.
1 Find a small cyclic partition of the function f .

2 Give a general algorithm based on cyclic partitions to compute the convolution.

5/11

Computing Generalized Convolutions

Theorem (Brute Force Approach)

f -Convolution can be solved in time |D|2n · nO(1) by a brute-force approach.

We improve the naive computation for all functions f .

Main Theorem (simplified)

f -Convolution can be solved in time (56 |D|
2)n · nO(1) for all f : D ×D → D.

Example for |D| = 6:
Naive algorithm: |D|2n · nO(1) = 36n · nO(1)

Our result: (56 |D|
2)n · nO(1) = 30n · nO(1)

Main idea: “Reduce” f -Convolution to addition with modulo.
1 Find a small cyclic partition of the function f .
2 Give a general algorithm based on cyclic partitions to compute the convolution.

5/11

Cyclic Minors

Definition (Cyclic Minor)

For A;B ⊆ D and k ∈ N, (A;B; k) is a cyclic minor of f if the restriction of f to
A and B is addition modulo k , after relabeling the sets A, B, and D.

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f

The function
f : D ×D → D with
D = {a; b; c; d}.

db

b

c

d

a b

c

a

b

c

f

The function f restricted
to A = {b; c; d} and

B = {b; d}.

0 1

0

1

2

0 1

2

0

1

2

+

A relabeling shows
that (A;B; k) is a
cyclic minor of f
with A = {b; c; d},

B = {b; d}, and k = 3.

6/11

Cyclic Minors

Definition (Cyclic Minor)

For A;B ⊆ D and k ∈ N, (A;B; k) is a cyclic minor of f if the restriction of f to
A and B is addition modulo k , after relabeling the sets A, B, and D.

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f

The function
f : D ×D → D with
D = {a; b; c; d}.

db

b

c

d

a b

c

a

b

c

f

The function f restricted
to A = {b; c; d} and

B = {b; d}.

0 1

0

1

2

0 1

2

0

1

2

+

A relabeling shows
that (A;B; k) is a
cyclic minor of f
with A = {b; c; d},

B = {b; d}, and k = 3.

6/11

Cyclic Minors

Definition (Cyclic Minor)

For A;B ⊆ D and k ∈ N, (A;B; k) is a cyclic minor of f if the restriction of f to
A and B is addition modulo k , after relabeling the sets A, B, and D.

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f

The function
f : D ×D → D with
D = {a; b; c; d}.

db

b

c

d

a b

c

a

b

c

f

The function f restricted
to A = {b; c; d} and

B = {b; d}.

0 1

0

1

2

0 1

2

0

1

2

+

A relabeling shows
that (A;B; k) is a
cyclic minor of f
with A = {b; c; d},

B = {b; d}, and k = 3.

6/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).

7/11

Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1; B1; k1); : : : ; (Am; Bm; km)} if (Ai ; Bi ; ki)
is a cyclic minor of f and A1 × B1; : : : ; Am × Bm is a partition of D ×D.
The cost of the cyclic partition P is cost(P) :=

Pm
i=1 ki .

db

b

c

d

a b

c

a

b

c

a c

a a dbd

c d

c

ab

d

f
There is always a cyclic partition P0 of cost |D|2:
P0 = { (x; y ; 1) | x; y ∈ D}.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P = {({b; c; d}; {b; d}; 3); ({a; c}; {a; c}; 2);

({b; d}; {a; c}; 2); ({a}; {b; d}; 1)}:

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

This improves 42n · nO(1) = 16n · nO(1) to (8n + 4n) · nO(1) = 8n · nO(1).
7/11

How to Use Cyclic Partitions
Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

For all v ∈ Dn, we want to compute

(g ~f h)(v) :=
X

u;w∈Dn s.t. v=f (u;w)

g(u) · h(w):

Main idea:
1 For each coordinate i : Guess the minor (enumerate them) for the values ui ;wi .
2 Filter and relabel the values according to the cyclic minors.
3 Compute the contribution of the values [van Rooij ’21] (it is addition with modulo).
Running time: X

t∈[1 : :m]n

nY
i=1

kt[i]

!
=

mX
i=1

ki

!n
= cost(P)n

We show how to find a “good” cyclic partition.

8/11

How to Use Cyclic Partitions
Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

For all v ∈ Dn, we want to compute

(g ~f h)(v) :=
X

u;w∈Dn s.t. v=f (u;w)

g(u) · h(w):

Main idea:
1 For each coordinate i : Guess the minor (enumerate them) for the values ui ;wi .

2 Filter and relabel the values according to the cyclic minors.
3 Compute the contribution of the values [van Rooij ’21] (it is addition with modulo).
Running time: X

t∈[1 : :m]n

nY
i=1

kt[i]

!
=

mX
i=1

ki

!n
= cost(P)n

We show how to find a “good” cyclic partition.

8/11

How to Use Cyclic Partitions
Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

For all v ∈ Dn, we want to compute

(g ~f h)(v) :=
X

u;w∈Dn s.t. v=f (u;w)

g(u) · h(w):

Main idea:
1 For each coordinate i : Guess the minor (enumerate them) for the values ui ;wi .
2 Filter and relabel the values according to the cyclic minors.

3 Compute the contribution of the values [van Rooij ’21] (it is addition with modulo).
Running time: X

t∈[1 : :m]n

nY
i=1

kt[i]

!
=

mX
i=1

ki

!n
= cost(P)n

We show how to find a “good” cyclic partition.

8/11

How to Use Cyclic Partitions
Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

For all v ∈ Dn, we want to compute

(g ~f h)(v) :=
X

u;w∈Dn s.t. v=f (u;w)

g(u) · h(w):

Main idea:
1 For each coordinate i : Guess the minor (enumerate them) for the values ui ;wi .
2 Filter and relabel the values according to the cyclic minors.
3 Compute the contribution of the values [van Rooij ’21] (it is addition with modulo).

Running time: X
t∈[1 : :m]n

nY
i=1

kt[i]

!
=

mX
i=1

ki

!n
= cost(P)n

We show how to find a “good” cyclic partition.

8/11

How to Use Cyclic Partitions
Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

For all v ∈ Dn, we want to compute

(g ~f h)(v) :=
X

u;w∈Dn s.t. v=f (u;w)

g(u) · h(w):

Main idea:
1 For each coordinate i : Guess the minor (enumerate them) for the values ui ;wi .
2 Filter and relabel the values according to the cyclic minors.
3 Compute the contribution of the values [van Rooij ’21] (it is addition with modulo).
Running time: X

t∈[1 : :m]n

nY
i=1

kt[i]

!
=

mX
i=1

ki

!n
= cost(P)n

We show how to find a “good” cyclic partition.

8/11

How to Use Cyclic Partitions
Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f .
There is a (cost(P)n + |D|n) · nO(1) time algorithm for f -Convolution.

For all v ∈ Dn, we want to compute

(g ~f h)(v) :=
X

u;w∈Dn s.t. v=f (u;w)

g(u) · h(w):

Main idea:
1 For each coordinate i : Guess the minor (enumerate them) for the values ui ;wi .
2 Filter and relabel the values according to the cyclic minors.
3 Compute the contribution of the values [van Rooij ’21] (it is addition with modulo).
Running time: X

t∈[1 : :m]n

nY
i=1

kt[i]

!
=

mX
i=1

ki

!n
= cost(P)n

We show how to find a “good” cyclic partition.
8/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.
3 Combine them to one cyclic partition P of f

by setting P :=
S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.

2 For each i : Construct a cyclic partition Pi of f
restricted to Di and D with cost at most 5=3 · |D|.

3 Combine them to one cyclic partition P of f
by setting P :=

S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.

2 For each i : Construct a cyclic partition Pi of f
restricted to Di and D with cost at most 5=3 · |D|.

3 Combine them to one cyclic partition P of f
by setting P :=

S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2: cost = 44

(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.

3 Combine them to one cyclic partition P of f
by setting P :=

S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2: cost = 44

(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.

3 Combine them to one cyclic partition P of f
by setting P :=

S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

12

11

11

10

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.
3 Combine them to one cyclic partition P of f

by setting P :=
S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

12

11

11

10

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.
3 Combine them to one cyclic partition P of f

by setting P :=
S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

12

11

11

10
+

+

+

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.
3 Combine them to one cyclic partition P of f

by setting P :=
S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

12

11

11

10
+

+

+

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part I

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) ≤ 5
6 · |D|

2.

Proof:
1 Partition D into |D|=2 sets Di of size two.
2 For each i : Construct a cyclic partition Pi of f

restricted to Di and D with cost at most 5=3 · |D|.
3 Combine them to one cyclic partition P of f

by setting P :=
S
i Pi .

The cyclic partition P of f has cost

cost(P) =
|D|=2X
i=1

cost(Pi) ≤
|D|
2
· 5
3
|D| = 5

6
|D|2:

12

11

11

10
+

+

+

cost = 44
(trivial: 64)

Next: Find a “small” cyclic partition of f restricted to Di and D.

9/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

Partition the edges of the graph into nice subgraphs

which are

cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs

which are

cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs

which are

cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs

which are
cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs

which are
cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs which are
cycles: directly yield cyclic minors

stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0

1 2 3

02 3

0

1

6

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs which are
cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1

paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0 10

4

91 2 3

02 3

0

1

6

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs which are
cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

10/11

Finding Cyclic Partitions: Part II
Consider f restricted to Di = {x; y} and D (assume D = {0; : : : ; 9}):

1 2 3 4 5 6 7 8 9

x

4

5 6

7 8 9y

7 82

4 4

4

0 10

4

91 2 3

02 3

0

1

6

Construct a graph G with V (G) = D and E(G) = {(f (x; d); f (y; d)) | d ∈ D}.

0

3

1

5

6

7 8 92 4

Partition the edges of the graph into nice subgraphs which are
cycles: directly yield cyclic minors
stars: can be decomposed into trivial cyclic minors of cost 1
paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.
10/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:

We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.

One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:

Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?

Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

11/11

Conclusion
Main Theorem
Let D be a finite set and f : D ×D → D. There is an algorithm for
f -Convolution with running time (56 · |D|

2)n · nO(1) when |D| is even, or
(56 · |D|

2 + 1
6 · |D|)

n · nO(1) when |D| is odd.

Additional results:
We generalize the results to f with different finite sets, i.e., f : L× R→ T .
This includes the case when f is undefined for certain inputs.
One entry of the f -convolution can be computed in time |D|!·n=2 · nO(1)
where ! < 2:373 is the matrix-multiplication exponent.

Open questions:
Can we show a lower bound?
Is |D|(2−›)n · nO(1) (for some › > 0) or even |D|n · nO(1) achievable for all f ?
(Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623
11/11

Special Structures

Improvements for the following cases might give helpful insights:

a a

cb

b

c

Graph representation:
b ca

Current cost: 4
Expected cost: 3

a c

bb

b

a

Graph representation:

b ca

Current cost: 4
Expected cost: 4

a c

db

b

d

Graph representation:

b da

c

Current cost: 5
Expected cost: 4

	Appendix

