

Computing Generalized Convolutions Faster Than Brute Force IPEC 2022

Barış Can Esmer¹ Ariel Kulik¹ Dániel Marx¹ **Philipp Schepper**¹ Karol Wegrzycki²

¹ CISPA Helmholtz Center for Information Security, Germany
² Saarland University and Max Planck Institute for Informatics, Saarbrücken, Germany

September 7, 2022

Convolutions are used in parameterized and exact algorithms for

- Hamiltonian Cycle,
- Feedback Vertex Set,
- Steiner Tree, . . .

Convolutions are used in parameterized and exact algorithms for

- Hamiltonian Cycle,
- Feedback Vertex Set,
- Steiner Tree, . . .

Common application:

Improved computation of the join nodes for DPs on tree decompositions.

Convolutions are used in parameterized and exact algorithms for

- Hamiltonian Cycle,
- Feedback Vertex Set,
- Steiner Tree, . . .

Common application:

Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:

- (Generalized) Subset Convolution
- Cover Product
- XOR Product, ...

Convolutions are used in parameterized and exact algorithms for

- Hamiltonian Cycle,
- Feedback Vertex Set,
- Steiner Tree, . . .

Common application:

Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:

- (Generalized) Subset Convolution
- Cover Product
- XOR Product, ...

Difficulty:

Normally each problem needs a separate type of convolution.

Convolutions are used in parameterized and exact algorithms for

- Hamiltonian Cycle,
- Feedback Vertex Set,
- Steiner Tree, ...

Common application:

Improved computation of the join nodes for DPs on tree decompositions.

Different variants of convolutions are studied:

- (Generalized) Subset Convolution
- Cover Product
- XOR Product, ...

Difficulty:

Normally each problem needs a separate type of convolution.

Goal:

Unify the convolution procedures under one umbrella.

Classical convolution:

For two functions $g, h: \mathbb{Z} \to \mathbb{Z}$ this is

$$(g*h)(c) := \sum_{a} g(a) \cdot h(c-a) = \sum_{a+b=c} g(a) \cdot h(b) \qquad \forall c \in \mathbb{Z}.$$

Classical convolution:

For two functions $g, h: \mathbb{Z} \to \mathbb{Z}$ this is

$$(g*h)(c) := \sum_{a} g(a) \cdot h(c-a) = \sum_{a+b=c} g(a) \cdot h(b) \qquad \forall c \in \mathbb{Z}.$$

We do not study this!

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Conditions at the sums varys.

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Conditions at the sums varys. \implies Use a more general definition.

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Conditions at the sums varys. \implies Use a more general definition.

Definition (f-CONVOLUTION (van Rooij 2021))

Fix: A finite domain *D* and a function $f: D \times D \rightarrow D$.

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Conditions at the sums varys. \implies Use a more general definition.

Definition (f-CONVOLUTION (van Rooij 2021))

Fix: A finite domain D and a function $f: D \times D \rightarrow D$.

In: Two functions $g, h: D^n \to \mathbb{Z}$.

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Conditions at the sums varys. \implies Use a more general definition.

Definition (f-CONVOLUTION (van Rooij 2021))

Fix: A finite domain D and a function $f: D \times D \rightarrow D$.

In: Two functions $g, h: D^n \to \mathbb{Z}$.

Out: The f-Convolution of g and h, denoted by $(g \circledast_f h) : D^n \to \mathbb{Z}$,

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B) \quad \forall C \subseteq S.$$

Conditions at the sums varys. \implies Use a more general definition.

Definition (f-CONVOLUTION (van Rooij 2021))

Fix: A finite domain D and a function $f: D \times D \rightarrow D$.

In: Two functions $g, h: D^n \to \mathbb{Z}$.

Out: The *f*-CONVOLUTION of *g* and *h*, denoted by $(g \circledast_f h) : D^n \to \mathbb{Z}$, defined as

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\substack{\mathbf{u}, \mathbf{w} \in D^n \\ \text{s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})}} g(\mathbf{u}) \cdot h(\mathbf{w}) \qquad \forall \mathbf{v} \in D^n.$$

Here, $f(\mathbf{u}, \mathbf{v})$ denotes the coordinate-wise application of f for two vectors $\mathbf{u}, \mathbf{v} \in D^n$.

Cover Product:

Let S be a set. For two functions $g, h: 2^S \to \mathbb{Z}$, the cover product is

$$(g *_{\mathsf{CP}} h)(C) := \sum_{A \cup B = C} g(A) \cdot h(B)$$
 $\forall C \subseteq S$.

Conditions at the sums varys. \implies Use a more general definition.

Definition (f-CONVOLUTION (van Rooij 2021))

Fix: A finite domain *D* and a function $f: D \times D \rightarrow D$.

In: Two functions $g, h: D^n \to \mathbb{Z}$.

Out: The *f*-CONVOLUTION of *g* and *h*, denoted by $(g \circledast_f h) : D^n \to \mathbb{Z}$, defined as

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\substack{\mathbf{u}, \mathbf{w} \in D^n \\ \text{s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})}} g(\mathbf{u}) \cdot h(\mathbf{w}) \qquad \forall \mathbf{v} \in D^n.$$

Here, $f(\mathbf{u}, \mathbf{v})$ denotes the coordinate-wise application of f for two vectors $\mathbf{u}, \mathbf{v} \in D^n$.

For Cover Product we set $D = \{0, 1\}$ and f as addition with maximum of 1.

Theorem (Brute Force Approach)

 $f ext{-Convolution}$ can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

Only for special cases faster algorithms are known.

Theorem (van Rooij 2021, Umans 2019 + Yates 1937)

f-Convolution can be solved

- lacksquare in time $|D|^n \cdot n^{\mathcal{O}(1)}$ if f is addition (with maximum or modulo), or maximum, and
- in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ if f is a finite-group operation with $\omega < 2.373$ being the matrix-multiplication exponent.

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

Only for special cases faster algorithms are known.

Theorem (van Rooij 2021, Umans 2019 + Yates 1937)

f-CONVOLUTION can be solved

- in time $|D|^n \cdot n^{\mathcal{O}(1)}$ if f is addition (with maximum or modulo), or maximum, and
- in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ if f is a finite-group operation with $\omega < 2.373$ being the matrix-multiplication exponent.

We improve the naive computation for all functions f.

Main Theorem (simplified)

f-Convolution can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

We improve the naive computation for *all* functions f.

Main Theorem (simplified)

f-CONVOLUTION can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Example for |D| = 6:

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

We improve the naive computation for all functions f.

Main Theorem (simplified)

f-Convolution can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Example for |D| = 6:

■ Naive algorithm: $|D|^{2n} \cdot n^{\mathcal{O}(1)} = 36^n \cdot n^{\mathcal{O}(1)}$

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

We improve the naive computation for all functions f.

Main Theorem (simplified)

f-CONVOLUTION can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Example for |D| = 6:

- Naive algorithm: $|D|^{2n} \cdot n^{\mathcal{O}(1)} = 36^n \cdot n^{\mathcal{O}(1)}$
- Our result: $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)} = 30^n \cdot n^{\mathcal{O}(1)}$

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

We improve the naive computation for *all* functions f.

Main Theorem (simplified)

f-Convolution can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Example for |D| = 6:

■ Naive algorithm: $|D|^{2n} \cdot n^{\mathcal{O}(1)} = 36^n \cdot n^{\mathcal{O}(1)}$

■ Our result: $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)} = 30^n \cdot n^{\mathcal{O}(1)}$

Main idea: "Reduce" *f*-CONVOLUTION to addition with modulo.

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

We improve the naive computation for *all* functions f.

Main Theorem (simplified)

f-CONVOLUTION can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Example for |D| = 6:

- Naive algorithm: $|D|^{2n} \cdot n^{\mathcal{O}(1)} = 36^n \cdot n^{\mathcal{O}(1)}$
- Our result: $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)} = 30^n \cdot n^{\mathcal{O}(1)}$

Main idea: "Reduce" f-CONVOLUTION to addition with modulo.

 \blacksquare Find a small cyclic partition of the function f.

Theorem (Brute Force Approach)

f-Convolution can be solved in time $|D|^{2n} \cdot n^{\mathcal{O}(1)}$ by a brute-force approach.

We improve the naive computation for all functions f.

Main Theorem (simplified)

f-CONVOLUTION can be solved in time $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)}$ for all $f: D \times D \to D$.

Example for |D| = 6:

- Naive algorithm: $|D|^{2n} \cdot n^{\mathcal{O}(1)} = 36^n \cdot n^{\mathcal{O}(1)}$
- Our result: $(\frac{5}{6}|D|^2)^n \cdot n^{\mathcal{O}(1)} = 30^n \cdot n^{\mathcal{O}(1)}$

Main idea: "Reduce" *f*-CONVOLUTION to addition with modulo.

- \blacksquare Find a small cyclic partition of the function f.
- 2 Give a general algorithm based on cyclic partitions to compute the convolution.

Cyclic Minors

Definition (Cyclic Minor)

For $A, B \subseteq D$ and $k \in \mathbb{N}$, (A, B, k) is a *cyclic minor* of f if the restriction of f to A and B is addition modulo k, after relabeling the sets A, B, and D.

f	а	b	С	d
а	а	d	Ь	d
b	С	а	d	Ь
с	b	b	а	С
d	d	С	С	а

The function

$$f: D \times D \rightarrow D$$
 with $D = \{a, b, c, d\}.$

Cyclic Minors

Definition (Cyclic Minor)

For $A, B \subseteq D$ and $k \in \mathbb{N}$, (A, B, k) is a *cyclic minor* of f if the restriction of f to A and B is addition modulo k, after relabeling the sets A, B, and D.

f	а	b	С	d
а	а	d	Ь	d
b	С	а	d	b
с	b	b	а	С
d	d	С	С	а

The function $f: D \times D \rightarrow D$ with $D = \{a, b, c, d\}$.

f	b	d
b	а	Ь
С	b	С
d	С	а

The function
$$f$$
 restricted to $A = \{b, c, d\}$ and $B = \{b, d\}$.

Cyclic Minors

Definition (Cyclic Minor)

For $A, B \subseteq D$ and $k \in \mathbb{N}$, (A, B, k) is a *cyclic minor* of f if the restriction of f to A and B is addition modulo k, after relabeling the sets A, B, and D.

f	а	b	с	d
а	а	d	Ь	d
b	С	а	d	Ь
с	b	b	а	С
d	d	С	С	а

The function $f: D \times D \rightarrow D$ with $D = \{a, b, c, d\}.$

f	b	d
b	а	Ь
С	b	С
d	С	а

The function f restricted to $A = \{b, c, d\}$ and $B = \{b, d\}$.

+	0	1
0	0	1
1	1	2
2	2	0

A relabeling shows that (A, B, k) is a cyclic minor of fwith $A = \{b, c, d\}$, $B = \{b, d\}$, and k = 3.

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \ldots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \ldots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	а	Ь	с	d
а	а	d	b	d
b	С	а	d	Ь
С	Ь	Ь	а	C
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	а	Ь	с	d
а	а	d	b	d
b	С	а	d	b
С	Ь	Ь	а	C
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

We show that non-trivial cyclic partitions always exist.

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	а	Ь	С	d
а	а	d	Ь	d
b	С	а	d	Ь
с	b	Ь	а	С
d	d	С	С	а

There is always a cyclic partition
$$\mathcal{P}_0$$
 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}$.

We show that non-trivial cyclic partitions always exist.

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	a	b	с	d
а	а	d	b	d
b	С	а	d	Ь
С	Ь	Ь	а	C
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

We show that non-trivial cyclic partitions always exist.

$$\mathcal{P} = \{(\{b, c, d\}, \{b, d\}, 3), (\{a, c\}, \{a, c\}, 2), (\{b, d\}, \{a, c\}, 2), (\{a\}, \{b, d\}, 1)\}.$$

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	а	Ь	С	d
а	а	d	b	d
b	С	а	d	b
С	b	b	а	С
d	d	С	С	а
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

We show that non-trivial cyclic partitions always exist.

$$\mathcal{P} = \{(\{b, c, d\}, \{b, d\}, 3), (\{a, c\}, \{a, c\}, 2), (\{b, d\}, \{a, c\}, 2), (\{a\}, \{b, d\}, 1)\}.$$

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	а	Ь	С	d
а	а	d	b	d
b	С	а	d	b
С	Ь	Ь	а	С
d	d	С	С	а
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

We show that non-trivial cyclic partitions always exist.

$$\mathcal{P} = \{(\{b, c, d\}, \{b, d\}, 3), (\{a, c\}, \{a, c\}, 2), (\{b, d\}, \{a, c\}, 2), (\{a\}, \{b, d\}, 1)\}.$$

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	a	b	с	d
а	а	d	Ь	d
Ь	С	а	d	b
С	Ь	Ь	а	C
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

We show that non-trivial cyclic partitions always exist.

$$\mathcal{P} = \{(\{b, c, d\}, \{b, d\}, 3), (\{a, c\}, \{a, c\}, 2), (\{b, d\}, \{a, c\}, 2), (\{a\}, \{b, d\}, 1)\}.$$

Cyclic Partitions

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	а	Ь	с	d
а	а	d	Ь	d
b	С	а	d	Ь
с	Ь	Ь	а	С
d	d	С	С	а
_				

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}.$

We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:

$$\mathcal{P} = \{(\{b, c, d\}, \{b, d\}, 3), (\{a, c\}, \{a, c\}, 2), (\{b, d\}, \{a, c\}, 2), (\{a\}, \{b, d\}, 1)\}.$$

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f.

There is a $(cost(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-Convolution.

Cyclic Partitions

Definition (Cyclic Partition)

A cyclic partition of f is a set $\mathcal{P} = \{(A_1, B_1, k_1), \dots, (A_m, B_m, k_m)\}$ if (A_i, B_i, k_i) is a cyclic minor of f and $A_1 \times B_1, \dots, A_m \times B_m$ is a partition of $D \times D$. The cost of the cyclic partition \mathcal{P} is $cost(\mathcal{P}) := \sum_{i=1}^m k_i$.

f	a	b	С	d
<u> </u>	а	D	L	u
а	а	d	b	d
b	С	а	d	Ь
С	b	Ь	а	С
d	d	С	С	а

There is always a cyclic partition \mathcal{P}_0 of cost $|D|^2$: $\mathcal{P}_0 = \{ (x, y, 1) \mid x, y \in D \}$.

We show that non-trivial cyclic partitions always exist.

A cyclic partition of *f* with cost 8:

$$\mathcal{P} = \{(\{b, c, d\}, \{b, d\}, 3), (\{a, c\}, \{a, c\}, 2), (\{b, d\}, \{a, c\}, 2), (\{a\}, \{b, d\}, 1)\}.$$

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f.

There is a $(cost(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-Convolution.

This improves
$$\mathbf{4^{2n}} \cdot n^{\mathcal{O}(1)} = \mathbf{16^n} \cdot n^{\mathcal{O}(1)}$$
 to $(\mathbf{8^n + 4^n}) \cdot n^{\mathcal{O}(1)} = \mathbf{8^n} \cdot n^{\mathcal{O}(1)}$.

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f. There is a $(\cos(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-CONVOLUTION.

For all $\mathbf{v} \in D^n$, we want to compute

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\mathbf{u}, \mathbf{w} \in D^n \text{ s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})} g(\mathbf{u}) \cdot h(\mathbf{w}).$$

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f. There is a $(\cos(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-CONVOLUTION.

For all $\mathbf{v} \in D^n$, we want to compute

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\mathbf{u}, \mathbf{w} \in D^n \text{ s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})} g(\mathbf{u}) \cdot h(\mathbf{w}).$$

Main idea:

1 For each coordinate i: Guess the minor (enumerate them) for the values \mathbf{u}_i , \mathbf{w}_i .

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f. There is a $(\cos(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-CONVOLUTION.

For all $\mathbf{v} \in D^n$, we want to compute

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\mathbf{u}, \mathbf{w} \in D^n \text{ s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})} g(\mathbf{u}) \cdot h(\mathbf{w}).$$

Main idea:

- **1** For each coordinate i: Guess the minor (enumerate them) for the values \mathbf{u}_i , \mathbf{w}_i .
- 2 Filter and relabel the values according to the cyclic minors.

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f. There is a $(\cos t(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-CONVOLUTION.

For all $\mathbf{v} \in D^n$, we want to compute

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\mathbf{u}, \mathbf{w} \in D^n \text{ s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})} g(\mathbf{u}) \cdot h(\mathbf{w}).$$

Main idea:

- 1 For each coordinate i: Guess the minor (enumerate them) for the values \mathbf{u}_i , \mathbf{w}_i .
- 2 Filter and relabel the values according to the cyclic minors.
- 3 Compute the contribution of the values [van Rooij '21] (it is addition with modulo).

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f.

There is a $(cost(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-Convolution.

For all $\mathbf{v} \in D^n$, we want to compute

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\mathbf{u}, \mathbf{w} \in D^n \text{ s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})} g(\mathbf{u}) \cdot h(\mathbf{w}).$$

Main idea:

- 1 For each coordinate i: Guess the minor (enumerate them) for the values \mathbf{u}_i , \mathbf{w}_i .
- 2 Filter and relabel the values according to the cyclic minors.
- 3 Compute the contribution of the values [van Rooij '21] (it is addition with modulo). Running time:

$$\sum_{t \in [1..m]^n} \left(\prod_{i=1}^n k_{t[i]} \right) = \left(\sum_{i=1}^m k_i \right)^n = \operatorname{cost}(\mathcal{P})^n$$

Lemma (Cyclic Partitions are Useful)

Let \mathcal{P} be a cyclic partition of f.

There is a $(\cos(\mathcal{P})^n + |D|^n) \cdot n^{\mathcal{O}(1)}$ time algorithm for f-Convolution.

For all $\mathbf{v} \in D^n$, we want to compute

$$(g \circledast_f h)(\mathbf{v}) := \sum_{\mathbf{u}, \mathbf{w} \in D^n \text{ s.t. } \mathbf{v} = f(\mathbf{u}, \mathbf{w})} g(\mathbf{u}) \cdot h(\mathbf{w}).$$

Main idea:

- 1 For each coordinate i: Guess the minor (enumerate them) for the values \mathbf{u}_i , \mathbf{w}_i .
- 2 Filter and relabel the values according to the cyclic minors.
- 3 Compute the contribution of the values [van Rooij '21] (it is addition with modulo). Running time:

$$\sum_{t \in [1..m]^n} \left(\prod_{i=1}^n k_{t[i]} \right) = \left(\sum_{i=1}^m k_i \right)^n = \operatorname{cost}(\mathcal{P})^n$$

We show how to find a "good" cyclic partition.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

1 Partition D into |D|/2 sets D_i of size two.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

1 Partition D into |D|/2 sets D_i of size two.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

- Partition D into |D|/2 sets D_i of size two.
- 2 For each i: Construct a cyclic partition \mathcal{P}_i of f restricted to D_i and D with cost at most $5/3 \cdot |D|$.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

- **1** Partition *D* into |D|/2 sets D_i of size two.
- 2 For each *i*: Construct a cyclic partition \mathcal{P}_i of *f* restricted to D_i and D with cost at most $5/3 \cdot |D|$.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

- **1** Partition *D* into |D|/2 sets D_i of size two.
- **2** For each *i*: Construct a cyclic partition \mathcal{P}_i of f restricted to D_i and D with cost at most $5/3 \cdot |D|$.
- 3 Combine them to one cyclic partition \mathcal{P} of f by setting $\mathcal{P} := \bigcup_i \mathcal{P}_i$.

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

- **1** Partition *D* into |D|/2 sets D_i of size two.
- **2** For each *i*: Construct a cyclic partition \mathcal{P}_i of f restricted to D_i and D with cost at most $5/3 \cdot |D|$.
- **3** Combine them to one cyclic partition \mathcal{P} of f by setting $\mathcal{P} := \bigcup_i \mathcal{P}_i$.

cost = 44 (trivial: 64)

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

- 1 Partition *D* into |D|/2 sets D_i of size two.
- **2** For each *i*: Construct a cyclic partition \mathcal{P}_i of f restricted to D_i and D with cost at most $5/3 \cdot |D|$.
- 3 Combine them to one cyclic partition \mathcal{P} of f by setting $\mathcal{P} := \bigcup_i \mathcal{P}_i$.

The cyclic partition \mathcal{P} of f has cost

$$\operatorname{cost}(\mathcal{P}) = \sum_{i=1}^{|D|/2} \operatorname{cost}(\mathcal{P}_i) \leq \frac{|D|}{2} \cdot \frac{5}{3} |D| = \frac{5}{6} |D|^2.$$

cost = 44 (trivial: 64)

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition \mathcal{P} of f such that $cost(\mathcal{P}) \leq \frac{5}{6} \cdot |D|^2$.

Proof:

- Partition D into |D|/2 sets D_i of size two.
- **2** For each *i*: Construct a cyclic partition \mathcal{P}_i of f restricted to D_i and D with cost at most $5/3 \cdot |D|$.
- 3 Combine them to one cyclic partition \mathcal{P} of f by setting $\mathcal{P} := \bigcup_i \mathcal{P}_i$.

The cyclic partition \mathcal{P} of f has cost

$$\operatorname{cost}(\mathcal{P}) = \sum_{i=1}^{|D|/2} \operatorname{cost}(\mathcal{P}_i) \le \frac{|D|}{2} \cdot \frac{5}{3} |D| = \frac{5}{6} |D|^2.$$

cost = 44 (trivial: 64)

Next: Find a "small" cyclic partition of f restricted to D_i and D.

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, \dots, 9\}$):

	0	1	2	3	4	5	6	7	8	9
X	0	1	2	3	2	5	6	4	7	8
у	1	2	3	0	4	4	4	7	8	9

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, \dots, 9\}$):

	0	1	2	3	4	5	6	7	8	9
X	0	1	2	3	2	5	6	4	7	8
у	1	2	3	0	4	4	4	7	8	9

Construct a graph G with V(G) = D and $E(G) = \{(f(x, d), f(y, d)) \mid d \in D\}.$

- 3
- O
- 0

- 2
- 6

7

) (

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, ..., 9\}$):

		0	1	2	3	4	5	6	7	8	9
X	: (0	1	2	3	2	5	6	4	7	8
у	. :	1	2	3	0	4	4	4	7	8	9

Construct a graph G with V(G)=D and $E(G)=\{(f(x,d),f(y,d))\mid d\in D\}.$

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, ..., 9\}$):

	0	1	2	3	4	5	6	7	8	9
X	0	1	2	3	2	5	6	4	7	8
У	1	2	3	0	4	4	4	7	8	9

Construct a graph G with V(G) = D and $E(G) = \{(f(x, d), f(y, d)) \mid d \in D\}.$

Partition the edges of the graph into nice subgraphs

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, ..., 9\}$):

	0	1	2	3	4	5	6	7	8	9
X	0	1	2	3	2	5	6	4	7	8
У	1	2	3	0	4	4	4	7	8	9

Construct a graph G with V(G)=D and $E(G)=\{(f(x,d),f(y,d))\mid d\in D\}.$

Partition the edges of the graph into nice subgraphs

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, ..., 9\}$):

	0	1	2	3	4	5	6	7	8	9
X	0	1	2	3	2 4	5	6	4	7	8
У	1	2	3	0	4	4	4	7	8	9

Construct a graph G with V(G) = D and $E(G) = \{(f(x, d), f(y, d)) \mid d \in D\}.$

Partition the edges of the graph into nice subgraphs which are

cycles: directly yield cyclic minors

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, \dots, 9\}$):

	0	1	2	3	4	5	6	7	8	9
X	0	1 2	2	3	2	5	6	4	7	8
У	1	2	3	0	4	4	4	7	8	9

Construct a graph G with V(G) = D and $E(G) = \{(f(x, d), f(y, d)) \mid d \in D\}.$

Partition the edges of the graph into nice subgraphs which are

- cycles: directly yield cyclic minors
- stars: can be decomposed into trivial cyclic minors of cost 1

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, \dots, 9\}$):

	0	1	2	3	4	5	6	7	8	9	10
X	0	1	2	3	2	5	6	4	7	8	9
у	1	2	3	0	4	4	4	7	8	9	4

Construct a graph G with V(G) = D and $E(G) = \{(f(x, d), f(y, d)) \mid d \in D\}.$

Partition the edges of the graph into nice subgraphs which are

- cycles: directly yield cyclic minors
- stars: can be decomposed into trivial cyclic minors of cost 1
- paths: yield cyclic minors after adding one artificial edge

Consider f restricted to $D_i = \{x, y\}$ and D (assume $D = \{0, ..., 9\}$):

	0	1	2	3	4	5	6	7	8	9	10
X	0	1	2	3	2	5	6	4	7	8	9
у	1	2	3	0	4	4	4	7	8	9	4

Construct a graph G with V(G) = D and $E(G) = \{(f(x, d), f(y, d)) \mid d \in D\}.$

Partition the edges of the graph into nice subgraphs which are

- cycles: directly yield cyclic minors
- stars: can be decomposed into trivial cyclic minors of cost 1
- paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

■ We generalize the results to f with different finite sets, i.e., $f: L \times R \to T$. This includes the case when f is undefined for certain inputs.

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

- We generalize the results to f with different finite sets, i.e., $f: L \times R \to T$. This includes the case when f is undefined for certain inputs.
- One entry of the f-convolution can be computed in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ where $\omega < 2.373$ is the matrix-multiplication exponent.

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

- We generalize the results to f with different finite sets, i.e., $f: L \times R \to T$. This includes the case when f is undefined for certain inputs.
- One entry of the f-convolution can be computed in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ where $\omega < 2.373$ is the matrix-multiplication exponent.

Open questions:

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

- We generalize the results to f with different finite sets, i.e., $f: L \times R \to T$. This includes the case when f is undefined for certain inputs.
- One entry of the f-convolution can be computed in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ where $\omega < 2.373$ is the matrix-multiplication exponent.

Open questions:

■ Can we show a lower bound?

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

- We generalize the results to f with different finite sets, i.e., $f: L \times R \rightarrow T$. This includes the case when f is undefined for certain inputs.
- One entry of the f-convolution can be computed in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ where $\omega < 2.373$ is the matrix-multiplication exponent.

Open questions:

- Can we show a lower bound?
- Is $|D|^{(2-\epsilon)n} \cdot n^{\mathcal{O}(1)}$ (for some $\epsilon > 0$) or even $|D|^n \cdot n^{\mathcal{O}(1)}$ achievable for all f? (Cyclic partitions seem to be useful to achieve such improvements.)

Main Theorem

Let D be a finite set and $f: D \times D \to D$. There is an algorithm for f-Convolution with running time $(\frac{5}{6} \cdot |D|^2)^n \cdot n^{\mathcal{O}(1)}$ when |D| is even, or $(\frac{5}{6} \cdot |D|^2 + \frac{1}{6} \cdot |D|)^n \cdot n^{\mathcal{O}(1)}$ when |D| is odd.

Additional results:

- We generalize the results to f with different finite sets, i.e., $f: L \times R \to T$. This includes the case when f is undefined for certain inputs.
- One entry of the f-convolution can be computed in time $|D|^{\omega \cdot n/2} \cdot n^{\mathcal{O}(1)}$ where $\omega < 2.373$ is the matrix-multiplication exponent.

Open questions:

- Can we show a lower bound?
- Is $|D|^{(2-\epsilon)n} \cdot n^{\mathcal{O}(1)}$ (for some $\epsilon > 0$) or even $|D|^n \cdot n^{\mathcal{O}(1)}$ achievable for all f? (Cyclic partitions seem to be useful to achieve such improvements.)

Full version: arXiv:2209.01623

Special Structures

Improvements for the following cases might give helpful insights:

Graph representation:

Graph representation:

Current cost: 4 Expected cost: 3 Current cost: 4 Expected cost: 4

Current cost: 5 Expected cost: 4