““|CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

Z
Y

Computing Generalized Convolutions

Faster Than Brute Force
IPEC 2022

Baris Can Esmer!  Ariel Kulik!  Daniel Marx?
Philipp Schepper! Karol Wegrzycki?

1 CISPA Helmholtz Center for Information Security, Germany
2 Saarland University and Max Planck Institute for Informatics, Saarbriicken, Germany

September 7, 2022



-
Motivation (.| CISPA

Convolutions are used in parameterized and exact algorithms for

m Hamiltonian Cycle,
m Feedback Vertex Set,

m Steiner Tree, ...

2/11



-
Motivation (.| CISPA

Convolutions are used in parameterized and exact algorithms for
m Hamiltonian Cycle,

m Feedback Vertex Set,

m Steiner Tree, ...

Common application:
Improved computation of the join nodes for DPs on tree decompositions.

2/11



-
Motivation Lo|cISPA

Convolutions are used in parameterized and exact algorithms for

m Hamiltonian Cycle,

m Feedback Vertex Set,

m Steiner Tree, ...

Common application:

Improved computation of the join nodes for DPs on tree decompositions.
Different variants of convolutions are studied:

m (Generalized) Subset Convolution

m Cover Product

m XOR Product, ...

2/11



-
Motivation Lo|cISPA

Convolutions are used in parameterized and exact algorithms for

m Hamiltonian Cycle,

m Feedback Vertex Set,

m Steiner Tree, ...

Common application:

Improved computation of the join nodes for DPs on tree decompositions.
Different variants of convolutions are studied:

m (Generalized) Subset Convolution

m Cover Product

m XOR Product, ...

Difficulty:
Normally each problem needs a separate type of convolution.

2/11



-
Motivation L.|C1SPA

Convolutions are used in parameterized and exact algorithms for
m Hamiltonian Cycle,

m Feedback Vertex Set,

m Steiner Tree, ...

Common application:

Improved computation of the join nodes for DPs on tree decompositions.
Different variants of convolutions are studied:

m (Generalized) Subset Convolution

m Cover Product

m XOR Product, ...

Difficulty:

Normally each problem needs a separate type of convolution.

Goal:
Unify the convolution procedures under one umbrella.
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Convolutions

Classical convolution:
For two functions g, h: Z — Z this is

(g * h)(c Zg (c—a) Z g(a) - h(b) Vecel.
a+b=c
We do not study this!
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Convolutions

Cover Product:
Let S be a set. For two functions g, h: 25 — Z, the cover product is

(g*cp N)(C) = Y  g(A) h(B) vccs.

AUB=C

Conditions at the sums varys. = Use a more general definition.

Definition (f-CONVOLUTION (van Rooij 2021))

Fix: A finite domain D and a function f: D x D — D.
In: Two functions g, h: D" — Z.
Out: The f-CONVOLUTION of g and h, denoted by (g ®f h) : D" — Z, defined as

(g ®r h)(v) = Z g(u) - h(w) Vv e D"
s.t}lc:f;%izvv)

Here, f(u, v) denotes the coordinate-wise application of f for two vectors u,v € D".
For Cover Product we set D = {0, 1} and f as addition with maximum of 1.
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Computing Generalized Convolutions

Theorem (Brute Force Approach)

f-CONVOLUTION can be solved in time |D[?" - n®1) by a brute-force approach.
We improve the naive computation for all functions f.

Main Theorem (simplified)

f-CONVOLUTION can be solved in time (2|D|?)" - n®®) for all f: D x D — D.

Example for |D| = 6:
m Naive algorithm: |D|?" - n®(1) = 36" . n©(1)
m Our result: (2|D|?)" - n®®) =307 . M)

Main idea: "Reduce” f-CONVOLUTION to addition with modulo.
1 Find a small cyclic partition of the function f.
2 Give a general algorithm based on cyclic partitions to compute the convolution.
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Cyclic Minors

Definition (Cyclic Minor)

For A, B C D and k € N, (A, B, k) is a cyclic minor of f if the restriction of f to
A and B is addition modulo k, after relabeling the sets A, B, and D.
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The function
f: Dx D — D with
D ={a b, c,d}.
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Cyclic Minors

Definition (Cyclic Minor)

For A, B C D and k € N, (A, B, k) is a cyclic minor of f if the restriction of f to
A and B is addition modulo k, after relabeling the sets A, B, and D.

flalb|c]|d f b d
alald|b]|d
blc|la|d]|b b a b
clblblalc c b c
dld|c|c]|a d c a
The function The function f restricted
f: D x D — D with to A={b, c,d} and

D ={a b, c d}. B = {b, d}.
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Cyclic Minors i|CISPA
Definition (Cyclic Minor)

For A, B C D and k € N, (A, B, k) is a cyclic minor of f if the restriction of f to
A and B is addition modulo k, after relabeling the sets A, B, and D.

flalb]lc]ld f b d + 0 1
alald|b|d

blclal|ld]|b b a b 0 0 1
clb|blalc c b c 1 1 2
dlclc]|a d c a 2 2 0

The function The function f restricted A relabeling shows

f: D x D — D with to A={b, c,d} and that (A, B, k) is a
D ={a b, c,d}. B ={b,d}. cyclic minor of f

with A = {b, c, d},
B ={b,d}, and k =3.
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Cyclic Partitions
Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1, B1, k1), - -, (Am: Bm, km)} if (Ai, B, ki)
is a cyclic minor of f and A; X By, ..., Am X Bn, is a partition of D x D.
The cost of the cyclic partition P is cost(P) = > I, ki.
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is a cyclic minor of f and A; X By, ..., Am X Bn, is a partition of D x D.
The cost of the cyclic partition P is cost(P) = > I, ki.

There is always a cyclic partition Py of cost |D|2:

flalblcldl  Py={(xy1)|xyeD}

alald|b]|d . . .. .
We show that non-trivial cyclic partitions always exist.

b| c d| b

clb|blalc

dld]|c|c]|a
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The cost of the cyclic partition P is cost(P) = > I, ki.

There is always a cyclic partition Py of cost |D|2:

flalblcld Po={(x.y,1)| x,y € D}.

alald|b|d We show that non-trivial cyclic partitions always exist.
biclald|b A cyclic partition of f with cost 8:

c]blblalc P ={({b,c.d} {b.d},3),({a, c}.{a, c} 2),
dldjelcls ({6, d}.{a,c}.2), ({a} {b. d}, 1)}.
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Definition (Cyclic Partition)

A cyclic partition of f is a set P = {(A1, B1, k1), - -, (Am: Bm, km)} if (Ai, B, ki)
is a cyclic minor of f and A; X By, ..., Am X Bn, is a partition of D x D.
The cost of the cyclic partition P is cost(P) = > I, ki.

There is always a cyclic partition Py of cost |D|2:
Po=4{(x,y.1) | x,y € D}.
We show that non-trivial cyclic partitions always exist.

A cyclic partition of f with cost 8:
P ={({b.c,d}{b d},3),({a c}.{a c} 2),
({b.d}.{a, c}.2). ({a}. {b,d}, 1)}.

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°1) time algorithm for f-CONVOLUTION.

This improves 42" . n©() = 16" - n®1) to (8" 4 4") - n®1) = g" . n©0), D



How to Use Cyclic Partitions

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°() time algorithm for f-CONVOLUTION.

For all v € D", we want to compute

(g @& h)(v) = > g(u) - h(w).

uweD" s.t. v=f(u,w)

8/11



How to Use Cyclic Partitions

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°() time algorithm for f-CONVOLUTION.

For all v € D", we want to compute

(g @& h)(v) = > g(u) - h(w).

uweD" s.t. v=f(u,w)

Main idea:
1 For each coordinate i: Guess the minor (enumerate them) for the values u;, w;.

8/11



How to Use Cyclic Partitions

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°() time algorithm for f-CONVOLUTION.

For all v € D", we want to compute

(g @& h)(v) = > g(u) - h(w).

uweD" s.t. v=f(u,w)

Main idea:
1 For each coordinate i: Guess the minor (enumerate them) for the values u;, w;.

2 Filter and relabel the values according to the cyclic minors.

8/11



How to Use Cyclic Partitions

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°() time algorithm for f-CONVOLUTION.

For all v € D", we want to compute

(g @& h)(v) = > g(u) - h(w).

uweD" s.t. v=f(u,w)

Main idea:

1 For each coordinate i: Guess the minor (enumerate them) for the values u;, w;.

2 Filter and relabel the values according to the cyclic minors.

3 Compute the contribution of the values [van Rooij '21] (it is addition with modulo).

8/11



How to Use Cyclic Partitions

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°() time algorithm for f-CONVOLUTION.

For all v € D", we want to compute
(g ® h)(v) = > g(u) - h(w).
uweD" s.t. v=Ff(u,w)
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How to Use Cyclic Partitions

Lemma (Cyclic Partitions are Useful)

Let P be a cyclic partition of f.
There is a (cost(P)" +|D|") - n"°() time algorithm for f-CONVOLUTION.

For all v € D", we want to compute

(g @& h)(v) = > g(u) - h(w).

uweD" s.t. v=f(u,w)

Main idea:
1 For each coordinate i: Guess the minor (enumerate them) for the values u;, w;.

2 Filter and relabel the values according to the cyclic minors.
3 Compute the contribution of the values [van Rooij '21] (it is addition with modulo).

Running time:
= () - (54 et
te[1..m]" \i=1 i=1

We show how to find a “good” cyclic partition.
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Finding Cyclic Partitions: Part | LSRR

Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) < 2 - [D|2.
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Proof:
1 Partition D into |D|/2 sets D; of size two.

2 For each i: Construct a cyclic partition P; of f
restricted to D; and D with cost at most 5/3 - |D)|.

3 Combine them to one cyclic partition P of f
by setting P :={J; Pi.
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Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) < 2 - [D|2.

Proof:
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—_
N

=+

2 For each i: Construct a cyclic partition P; of f

restricted to D; and D with cost at most 5/3 - |D)|. 1+1
3 Combine them to one cyclic partition P of f +
by setting P == U, P;. L1
Y g i [
cost = 44
(trivial: 64)
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P = < — . = — .
COSt( ) ’El COSt(F,) 5 3|D‘ 6|D|
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Lemma (Existence of Non-Trivial Cyclic Partitions)

There is a cyclic partition P of f such that cost(P) < 2 - [D|2.

Proof:
1 Partition D into |D|/2 sets D; of size two.
2 For each i: Construct a cyclic partition P; of f

—_
N

+2+

restricted to D; and D with cost at most 5/3 - |D)|. 1
3 Combine them to one cyclic partition P of f +
by setting P == |J,; P;. e,
Y g i [/
The cyclic partition P of f has cost cost — 44
D|/2 (trivial: 64)

— < — . = = — )
CO%(P)——[EICOﬂ(PJ 5 3|D‘ 6|D|

Next: Find a “small” cyclic partition of f restricted to D; and D.
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Consider f restricted to D; = {x,y} and D (assume D = {0,...,9}):

|ojt]2]3]4]5]6]7]8]9
0Ol1f(2)|3(2|5|6[4]|7|8

112]13(0]4]4 7189

X

y
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Consider f restricted to D; = {x,y} and D (assume D = {0, ..., 9}):

01|23 ]4|5]6]7]8]9
o|1|2[3]2(5|6|4|7]8
yl1i]|2]|3|o|a|a|a|7]8]09

Construct a graph G with V(G) = D and E(G) = {(f(x. d), f(y.d)) | d € D}.
® 6
© @ ® O ©)
® ®

X
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Consider f restricted to D; = {x,y} and D (assume D = {0, ..., 9}):
|ojt]2]3]4]5]6]7]8]9

0|11]2]3|2|5]|16|4]|7]8

y|l1]|2(3]0(4(4]|4(7]8]9
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Consider f restricted to D; = {x,y} and D (assume D = {0,...,9}):

|ojtf2[3]4]5]6]7]8]9

O 2888 2 (5|6 (4 (78

y [I2SNGN 4 | 4 | 4 [(7[8 9
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Consider f restricted to D; = {x, y} and D (assume D = {0, ...,9}):

Partition the edges of the graph into nice subgraphs which are
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Consider f restricted to D; = {x,y} and D (assume D = {0,...,9}):
loJ1]2]3]4]5]6]7]8]9
x[0 1 2 3|25

y‘1230444%

Construct a graph G with V(G) = D and E(G) = {(f(x,d), f(y,d)) | d € D}.

Partition the edges of the graph into nice subgraphs which are
m cycles: directly yield cyclic minors

m stars: can be decomposed into trivial cyclic minors of cost 1
m paths: yield cyclic minors after adding one artificial edge
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Finding Cyclic Partitions: Part I LSRR

Consider f restricted to D; = {x,y} and D (assume D = {0,...,9}):
Jo|1]2]3]4]5]6]7]8]9

y|1 2 3 0|4 4 4 'z

Partition the edges of the graph into nice subgraphs which are
m cycles: directly yield cyclic minors

m stars: can be decomposed into trivial cyclic minors of cost 1
m paths: yield cyclic minors after adding one artificial edge

Our bound is obtained by balancing different ways of decomposing the graph.
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Main Theorem

Let D be a finite set and f : D x D — D. There is an algorithm for
f-CoNVOLUTION with running time (2 - [D|?)" - n"°®) when |D] is even, or
(2-[D2+ L -|D))" n®® when |D] is odd.
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Full version: arXiv:2209.01623
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Special Structures

Improvements for the following cases might give helpful insights:

DD b|e
Dl:l .budd

Graph representation: Graph representation: Graph representation:
QTP o o >

@ 0, @)
Current cost: 4 Current cost: 4 Current cost: 5

Expected cost: 3 Expected cost: 4 Expected cost: 4



	Appendix

