
Anti-Factor is FPT
Parameterized by Treewidth and List Size

(but Counting is Hard)
IPEC 2022

Dániel Marx1 Govind S. Sankar2 Philipp Schepper1

1 CISPA Helmholtz Center for Information Security, Germany
2 Duke University, Durham, USA

September 8, 2022

The Classical Matching Problem

Definition (Perfect Matching)

Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) = 1, for all v ∈ V .

Well known to be poly-time solvable (Edmonds 1965).
Several generalizations studied (b-matching, even-degree subgraph, . . .).
Usually reducible to Perfect Matching.

Lovász introduced 1972 a general version called B-Factor.

2/13

The Classical Matching Problem

Definition (Perfect Matching)

Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) = 1, for all v ∈ V .

Well known to be poly-time solvable (Edmonds 1965).
Several generalizations studied (b-matching, even-degree subgraph, . . .).
Usually reducible to Perfect Matching.

Lovász introduced 1972 a general version called B-Factor.

2/13

The Classical Matching Problem

Definition (Perfect Matching)

Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) = 1, for all v ∈ V .

Well known to be poly-time solvable (Edmonds 1965).

Several generalizations studied (b-matching, even-degree subgraph, . . .).
Usually reducible to Perfect Matching.

Lovász introduced 1972 a general version called B-Factor.

2/13

The Classical Matching Problem

Definition (Perfect Matching)

Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) = 1, for all v ∈ V .

Well known to be poly-time solvable (Edmonds 1965).
Several generalizations studied (b-matching, even-degree subgraph, . . .).
Usually reducible to Perfect Matching.

Lovász introduced 1972 a general version called B-Factor.

2/13

The Classical Matching Problem

Definition (Perfect Matching)

Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) = 1, for all v ∈ V .

Well known to be poly-time solvable (Edmonds 1965).
Several generalizations studied (b-matching, even-degree subgraph, . . .).
Usually reducible to Perfect Matching.

Lovász introduced 1972 a general version called B-Factor.

2/13

The B-Factor Problem

Definition (B-Factor (Lovász 1972))

Fixed: A finite, non-empty set B ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) ∈ B, for all v ∈ V .

B = {1; 4}

Complexity of B-Factor is understood.

Theorem (Cornuéjols 1988, Marx, Sankar, S. 2021)

Depending on B (conditions are known), B-Factor can be solved

in polynomial time or
in time (maxB + 1)twnO(1) assuming a tree decomposition of width tw is given
which is essentially optimal unter SETH.

Until now we allowed degrees. What changes if we exclude degrees?

3/13

The B-Factor Problem

Definition (B-Factor (Lovász 1972))

Fixed: A finite, non-empty set B ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) ∈ B, for all v ∈ V .

B = {1; 4}

Complexity of B-Factor is understood.

Theorem (Cornuéjols 1988, Marx, Sankar, S. 2021)

Depending on B (conditions are known), B-Factor can be solved

in polynomial time or
in time (maxB + 1)twnO(1) assuming a tree decomposition of width tw is given
which is essentially optimal unter SETH.

Until now we allowed degrees. What changes if we exclude degrees?

3/13

The B-Factor Problem

Definition (B-Factor (Lovász 1972))

Fixed: A finite, non-empty set B ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) ∈ B, for all v ∈ V .

Complexity of B-Factor is understood.

Theorem (Cornuéjols 1988, Marx, Sankar, S. 2021)

Depending on B (conditions are known), B-Factor can be solved

in polynomial time or
in time (maxB + 1)twnO(1) assuming a tree decomposition of width tw is given
which is essentially optimal unter SETH.

Until now we allowed degrees. What changes if we exclude degrees?

3/13

The B-Factor Problem

Definition (B-Factor (Lovász 1972))

Fixed: A finite, non-empty set B ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) ∈ B, for all v ∈ V .

Complexity of B-Factor is understood.

Theorem (Cornuéjols 1988, Marx, Sankar, S. 2021)

Depending on B (conditions are known), B-Factor can be solved
in polynomial time or

in time (maxB + 1)twnO(1) assuming a tree decomposition of width tw is given
which is essentially optimal unter SETH.

Until now we allowed degrees. What changes if we exclude degrees?

3/13

The B-Factor Problem

Definition (B-Factor (Lovász 1972))

Fixed: A finite, non-empty set B ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) ∈ B, for all v ∈ V .

Complexity of B-Factor is understood.

Theorem (Cornuéjols 1988, Marx, Sankar, S. 2021)

Depending on B (conditions are known), B-Factor can be solved
in polynomial time or
in time (maxB + 1)twnO(1) assuming a tree decomposition of width tw is given
which is essentially optimal unter SETH.

Until now we allowed degrees. What changes if we exclude degrees?

3/13

The B-Factor Problem

Definition (B-Factor (Lovász 1972))

Fixed: A finite, non-empty set B ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) ∈ B, for all v ∈ V .

Complexity of B-Factor is understood.

Theorem (Cornuéjols 1988, Marx, Sankar, S. 2021)

Depending on B (conditions are known), B-Factor can be solved
in polynomial time or
in time (maxB + 1)twnO(1) assuming a tree decomposition of width tw is given
which is essentially optimal unter SETH.

Until now we allowed degrees. What changes if we exclude degrees?

3/13

The X-AntiFactor Problem

Definition (X-AntiFactor)

Fixed: A finite, non-empty set X ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) =∈ X, for all v ∈ V .

Which running time is needed to solve X-AntiFactor?

4/13

The X-AntiFactor Problem

Definition (X-AntiFactor)

Fixed: A finite, non-empty set X ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) =∈ X, for all v ∈ V .

B = {1; 4}:

Solution for B-Factor

Which running time is needed to solve X-AntiFactor?

4/13

The X-AntiFactor Problem

Definition (X-AntiFactor)

Fixed: A finite, non-empty set X ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) =∈ X, for all v ∈ V .

B = {1; 4}:

Solution for B-Factor

X = {1; 4}:

Complement of the solution for
B-Factor

Which running time is needed to solve X-AntiFactor?

4/13

The X-AntiFactor Problem

Definition (X-AntiFactor)

Fixed: A finite, non-empty set X ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) =∈ X, for all v ∈ V .

B = {1; 4}:

Solution for B-Factor

X = {1; 4}:

Complement of the solution for
B-Factor does not work.

Which running time is needed to solve X-AntiFactor?

4/13

The X-AntiFactor Problem

Definition (X-AntiFactor)

Fixed: A finite, non-empty set X ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) =∈ X, for all v ∈ V .

B = {1; 4}:

Solution for B-Factor

X = {1; 4}:

A correct solution for X-AntiFactor

Which running time is needed to solve X-AntiFactor?

4/13

The X-AntiFactor Problem

Definition (X-AntiFactor)

Fixed: A finite, non-empty set X ⊆ N.
Input: A simple graph G = (V; E).
Task: Check if there is a set S ⊆ E such that degS(v) =∈ X, for all v ∈ V .

B = {1; 4}:

Solution for B-Factor

X = {1; 4}:

A correct solution for X-AntiFactor

Which running time is needed to solve X-AntiFactor?

4/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).
For each vertex: Store the number of selected incident edges.
If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.
Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.
At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).

For each vertex: Store the number of selected incident edges.
If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.
Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.
At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).
For each vertex: Store the number of selected incident edges.

If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.
Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.
At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).
For each vertex: Store the number of selected incident edges.
If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.

Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.
At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).
For each vertex: Store the number of selected incident edges.
If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.
Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.

At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).
For each vertex: Store the number of selected incident edges.
If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.
Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.
At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Solving X-AntiFactor

We extend the algorithm for B-Factor to solve X-AntiFactor.

Theorem (Parameterize by maxX)

Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(maxX + 2)twnO(1) assuming a tree decomposition of width tw is given.

Intuition behind the base:
Consider a vertex set of size at most tw + 1 (the treewidth).
For each vertex: Store the number of selected incident edges.
If a vertex has at least maxX + 1 selected incident edges,
we do not care about the precise number.
Need maxB + 2 many states to encode this:
0, 1, . . . , maxB, and “≥ maxX + 1” edges.
At most (maxB + 2)tw+1 states needed.

Is this algorithm optimal?
For example:
Is the 1002twnO(1) algorithm for {0; 999; 1000}-AntiFactor optimal?

5/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .

Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.

A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .

One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?

6/13

Excluding Only Few Numbers

Theorem (Parameterize by |X|)
Let X ⊆ N be finite and fixed. X-AntiFactor can be solved in time
(|X|+ 1)4twnO(1) assuming a tree decomposition of width tw is given.

Consider X = {0; 999; 1000}.
Running time:
Improves from 1002twnO(1) to 44twnO(1) = 256twnO(1).

Intuition:
Fix a vertex v .
Fix four solutions which give degree 0, 300, 500, and 999 to v , respectively.
A future extension increases the degree of V by f .
One of these four solutions can be combined with the new solution as
{0 + f ; 300 + f ; 500 + f ; 999 + f } 6= {0; 999; 1000} = X.

Formal proof is based on an efficient computation of representative sets.

Once more: Is this algorithm optimal (up to constants in the exponent)?
6/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.

1 Group ≈ log(maxB) variables together.
Encode the assignments by the number of selected incident edges of a vertex.

2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.

2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.

3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.

4 At the crossing points check if the assignment satisfies the clause.

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

. . .

. . .

. . .

. . .

R1
1

Rm
t

Rm
1

R1
t

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

. . .

. . .

. . .

. . .

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth

2 Relations:
Check if the clauses are satisfied

3 Information vertices:
Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

. . .

. . .

. . .

. . .

R1
1

Rm
t

Rm
1

R1
t

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied

3 Information vertices:
Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

. . .

. . .

. . .

. . .

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Lower Bounds for B-Factor [Marx et al. ’21]

Reduction from SAT with n variables and m clauses to B-Factor:
0 Construct a grid-like B-Factor instance.
1 Group ≈ log(maxB) variables together.

Encode the assignments by the number of selected incident edges of a vertex.
2 Have one row for each group of variables.
3 Have one column for each clause of the formula.
4 At the crossing points check if the assignment satisfies the clause.

. . .

. . .

. . .

. . .

R1
1

Rm
t

Rm
1

R1
t

Main parts of the construction:
1 Grid-like structure:

Gives us a low treewidth
2 Relations:

Check if the clauses are satisfied
3 Information vertices:

Transfer information/assignment
between columns/clauses

Parts 1 and 2: They can be rather easily adopted for X-AntiFactor.
Part 3: Behavior of information vertices changes dramatically.

7/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.

We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.

Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.

The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:

¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):

¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!

8/13

Understanding Information Vertices

. . .
B

. . .
¸ ˛ ‚

The number of selected edges to the left, i.e., ¸ encodes the assignment.
We need the same assignment for all clauses to be correct.
Hence, the number of selected edges must not change.
We allow increases in the number but no decreases.
The relations compute ‚ based on ˛ such that ‚ = maxB − ˛.

B = {0; 2}:
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

Does not decrease.

X = {1} (B = {0; 2; 3; 4; : : : }):
¸ 7→ ˛ 7→ ‚ = 2− ˛
0 7→ 0; 2 7→ 2; 0

1 7→ 1; 2 7→ 1; 0

2 7→ 0; 1; 2 7→ 2; 1; 0

Can decrease: 0 2 1 0

Have to use some other property of B, respective X!
8/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

0 1 2 3

0 1 2 3

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

0 1 23

01 2 3

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

9/13

Half-Induced Matchings

Fix a bipartite graph G = (U ∪̇ V; E).

Definition (Induced Matching)

G has an induced matching of size ‘, if there are two sets A ⊆ U
and B ⊆ V of size ‘ such that the edges between A and B are a
perfect matching of size ‘.

0 1 2 3

0 1 2 3

We relax this notation via half-induced matchings.

Definition (Half-Induced Matching)

G has a half-induced matching of size ‘ if there are pairwise different
a0; : : : ; a‘−1 ∈ U and pairwise different b0; : : : ; b‘−1 ∈ V such that (1) (ai ; bi) ∈ E
for all i but (2) (ai ; bj) 6∈ E for all j < i .

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

9/13

Fixing the Behavior of Information Vertices

We use half-induced matchings to modify the information vertices.

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

. . .
B

. . .
¸ ˛ ‚

Before the modification.
B = {2}:
¸ 7→ ˛ 7→ ‚

0 7→ 2 7→ 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

. . .
X

. . .

¸ ¸′ ˛′ ‚

i 7→ ai bi 7→ 2− i
˛

After the modification.
X = {0; 2; 3} (B = {1; 4; 5; : : : }):

¸ 7→ ¸′ 7→ ˛′ 7→ ˛ 7→ ‚

0 7→ 1 7→ 0; 3 7→ 2; 1 7→ 0; 1

1 7→ 2 7→ 2; 3 7→ 1 7→ 1

2 7→ 0 7→ 1 7→ 0 7→ 0

10/13

Fixing the Behavior of Information Vertices

We use half-induced matchings to modify the information vertices.

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

. . .
B

. . .
¸ ˛ ‚

Before the modification.

B = {2}:
¸ 7→ ˛ 7→ ‚

0 7→ 2 7→ 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

. . .
X

. . .

¸ ¸′ ˛′ ‚

i 7→ ai bi 7→ 2− i
˛

After the modification.
X = {0; 2; 3} (B = {1; 4; 5; : : : }):

¸ 7→ ¸′ 7→ ˛′ 7→ ˛ 7→ ‚

0 7→ 1 7→ 0; 3 7→ 2; 1 7→ 0; 1

1 7→ 2 7→ 2; 3 7→ 1 7→ 1

2 7→ 0 7→ 1 7→ 0 7→ 0

10/13

Fixing the Behavior of Information Vertices

We use half-induced matchings to modify the information vertices.

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

. . .
B

. . .
¸ ˛ ‚

Before the modification.
B = {2}:
¸ 7→ ˛ 7→ ‚

0 7→ 2 7→ 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

. . .
X

. . .

¸ ¸′ ˛′ ‚

i 7→ ai bi 7→ 2− i
˛

After the modification.
X = {0; 2; 3} (B = {1; 4; 5; : : : }):

¸ 7→ ¸′ 7→ ˛′ 7→ ˛ 7→ ‚

0 7→ 1 7→ 0; 3 7→ 2; 1 7→ 0; 1

1 7→ 2 7→ 2; 3 7→ 1 7→ 1

2 7→ 0 7→ 1 7→ 0 7→ 0

10/13

Fixing the Behavior of Information Vertices

We use half-induced matchings to modify the information vertices.

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

. . .
B

. . .
¸ ˛ ‚

Before the modification.
B = {2}:
¸ 7→ ˛ 7→ ‚

0 7→ 2 7→ 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

. . .
X

. . .

¸ ¸′ ˛′ ‚

i 7→ ai bi 7→ 2− i
˛

After the modification.

X = {0; 2; 3} (B = {1; 4; 5; : : : }):
¸ 7→ ¸′ 7→ ˛′ 7→ ˛ 7→ ‚

0 7→ 1 7→ 0; 3 7→ 2; 1 7→ 0; 1

1 7→ 2 7→ 2; 3 7→ 1 7→ 1

2 7→ 0 7→ 1 7→ 0 7→ 0

10/13

Fixing the Behavior of Information Vertices

We use half-induced matchings to modify the information vertices.

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

. . .
B

. . .
¸ ˛ ‚

Before the modification.
B = {2}:
¸ 7→ ˛ 7→ ‚

0 7→ 2 7→ 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

. . .
X

. . .

¸ ¸′ ˛′ ‚

i 7→ ai bi 7→ 2− i
˛

After the modification.
X = {0; 2; 3} (B = {1; 4; 5; : : : }):

¸ 7→ ¸′ 7→ ˛′ 7→ ˛ 7→ ‚

0 7→ 1 7→ 0; 3 7→ 2; 1 7→ 0; 1

1 7→ 2 7→ 2; 3 7→ 1 7→ 1

2 7→ 0 7→ 1 7→ 0 7→ 0

10/13

Fixing the Behavior of Information Vertices

We use half-induced matchings to modify the information vertices.

b0 = 0 b2 = 1 2b1 = 3

a2 = 0a0 = 1 a1 = 2 3

. . .
B

. . .
¸ ˛ ‚

Before the modification.
B = {2}:
¸ 7→ ˛ 7→ ‚

0 7→ 2 7→ 0

1 7→ 1 7→ 1

2 7→ 0 7→ 2

. . .
X

. . .

¸ ¸′ ˛′ ‚

i 7→ ai bi 7→ 2− i
˛

After the modification.
X = {0; 2; 3} (B = {1; 4; 5; : : : }):
¸ 7→ ˛ 7→ ‚

0 7→ 2; 1 7→ 0; 1

1 7→ 1 7→ 1

2 7→ 0 7→ 0

10/13

Lower Bounds

Theorem (Lower Bound)

Fix a finite set X ⊆ N such that X contains a half-induced matching of size h and
0 ∈ X and max-gap(X) > 1.
For any " > 0, there is no (h − ")twnO(1) time algorithm for X-AntiFactor
even if we are given a tree decomposition of width tw, unless SETH fails.

This bound does not match the improved upper bound based on |X| but there are
connections:
Half-induced matchings imply lower bounds for the size of representative sets.
We conjecture that the half-induced matchings are the actual base for the lower
bound of the problem.

11/13

Lower Bounds

Theorem (Lower Bound)

Fix a finite set X ⊆ N such that X contains a half-induced matching of size h and
0 ∈ X and max-gap(X) > 1.
For any " > 0, there is no (h − ")twnO(1) time algorithm for X-AntiFactor
even if we are given a tree decomposition of width tw, unless SETH fails.

This bound does not match the improved upper bound based on |X| but there are
connections:

Half-induced matchings imply lower bounds for the size of representative sets.
We conjecture that the half-induced matchings are the actual base for the lower
bound of the problem.

11/13

Lower Bounds

Theorem (Lower Bound)

Fix a finite set X ⊆ N such that X contains a half-induced matching of size h and
0 ∈ X and max-gap(X) > 1.
For any " > 0, there is no (h − ")twnO(1) time algorithm for X-AntiFactor
even if we are given a tree decomposition of width tw, unless SETH fails.

This bound does not match the improved upper bound based on |X| but there are
connections:
Half-induced matchings imply lower bounds for the size of representative sets.

We conjecture that the half-induced matchings are the actual base for the lower
bound of the problem.

11/13

Lower Bounds

Theorem (Lower Bound)

Fix a finite set X ⊆ N such that X contains a half-induced matching of size h and
0 ∈ X and max-gap(X) > 1.
For any " > 0, there is no (h − ")twnO(1) time algorithm for X-AntiFactor
even if we are given a tree decomposition of width tw, unless SETH fails.

This bound does not match the improved upper bound based on |X| but there are
connections:
Half-induced matchings imply lower bounds for the size of representative sets.
We conjecture that the half-induced matchings are the actual base for the lower
bound of the problem.

11/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.

Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:

Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.

Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.

As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.

Result holds already for the case when only one number is excluded.

12/13

Counting Version

What changes if we count the number of solutions?

Upper Bounds:
maxX + 2 algorithm can be modified to include counting.
Approach with representative sets is not applicable (as they forget solutions).
Hence, no |X|O(tw)nO(1) algorithm.

Lower Bounds:
Modify the information vertices in a better way:
Use interpolation tricks to simulate the original behavior.
Half-induced matchings can be avoided.
As a consequence a tight lower bound can be obtained.

When parameterizing by the size of the set:
The problem becomes #W[1]-hard.
Result holds already for the case when only one number is excluded.

12/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum
forbidden degree

list size*

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1)

forbidden degree

list size*

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1)

forbidden degree no (h + 1− ")twnO(1)

list size*

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1)

forbidden degree no (h + 1− ")twnO(1)

list size*
(|X|+ 1)O(tw)nO(1)

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1)

forbidden degree no (h + 1− ")twnO(1)

list size*
(|X|+ 1)O(tw)nO(1)

no (|X|+1−")twnO(1)

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1) (maxX + 2)twnO(1)

forbidden degree no (h + 1− ")twnO(1) no (maxX + 2− ")twnO(1)

list size*
(|X|+ 1)O(tw)nO(1)

no (|X|+1−")twnO(1)

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1) (maxX + 2)twnO(1)

forbidden degree no (h + 1− ")twnO(1) no (maxX + 2− ")twnO(1)

list size*
(|X|+ 1)O(tw)nO(1) ffi
no (|X|+1−")twnO(1) #W[1]-hard

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

13/13

Conclusion
Fix some finite, non-empty set X ⊆ N.
Let h be the size of the largest half-induced matching in X.

Parameter Decision Version Counting Version

maximum (maxX + 2)twnO(1) (maxX + 2)twnO(1)

forbidden degree no (h + 1− ")twnO(1) no (maxX + 2− ")twnO(1)

list size*
(|X|+ 1)O(tw)nO(1) ffi
no (|X|+1−")twnO(1) #W[1]-hard

Always assuming
the problem is not polynomial-time solvable (or trivial) because of X,
a tree decomposition is given,
and SETH or #SETH holds.

* We use a variation of X-AntiFactor where multiple set are allowed but the size
of the sets is bounded by a constant.

Full version: arXiv:2110.09369
13/13

What Makes B-Factor Easy

Definition (Max-Gap)

For finite ∅ 6= B ⊆ N, max-gapB is the largest d such that at most d consecutive
numbers are missing in B.
Formally, there is an a with {a; a+ 1; : : : ; a+ d + 1} ∩ B = {a; a+ d + 1}.

Example: B = {1; 3; 6} has two gaps: one of size 1 and one of size 2 = max-gapB.

Theorem (Cornuéjols 1988)

B-Factor is solvable in polynomial time if max-gapB ≤ 1.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 (using two different
sets).
Stronger hardness than Cornuéjols was known implicitly in the literature (Dalmau
and Ford 2003).

What do we know about the parameterized version, e.g. for treewidth?

2/2

What Makes B-Factor Easy

Definition (Max-Gap)

For finite ∅ 6= B ⊆ N, max-gapB is the largest d such that at most d consecutive
numbers are missing in B.
Formally, there is an a with {a; a+ 1; : : : ; a+ d + 1} ∩ B = {a; a+ d + 1}.

Example: B = {1; 3; 6} has two gaps: one of size 1 and one of size 2 = max-gapB.

Theorem (Cornuéjols 1988)

B-Factor is solvable in polynomial time if max-gapB ≤ 1.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 (using two different
sets).
Stronger hardness than Cornuéjols was known implicitly in the literature (Dalmau
and Ford 2003).

What do we know about the parameterized version, e.g. for treewidth?

2/2

What Makes B-Factor Easy

Definition (Max-Gap)

For finite ∅ 6= B ⊆ N, max-gapB is the largest d such that at most d consecutive
numbers are missing in B.
Formally, there is an a with {a; a+ 1; : : : ; a+ d + 1} ∩ B = {a; a+ d + 1}.

Example: B = {1; 3; 6} has two gaps: one of size 1 and one of size 2 = max-gapB.

Theorem (Cornuéjols 1988)

B-Factor is solvable in polynomial time if max-gapB ≤ 1.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 (using two different
sets).
Stronger hardness than Cornuéjols was known implicitly in the literature (Dalmau
and Ford 2003).

What do we know about the parameterized version, e.g. for treewidth?

2/2

What Makes B-Factor Easy

Definition (Max-Gap)

For finite ∅ 6= B ⊆ N, max-gapB is the largest d such that at most d consecutive
numbers are missing in B.
Formally, there is an a with {a; a+ 1; : : : ; a+ d + 1} ∩ B = {a; a+ d + 1}.

Example: B = {1; 3; 6} has two gaps: one of size 1 and one of size 2 = max-gapB.

Theorem (Cornuéjols 1988)

B-Factor is solvable in polynomial time if max-gapB ≤ 1.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 (using two different
sets).
Stronger hardness than Cornuéjols was known implicitly in the literature (Dalmau
and Ford 2003).

What do we know about the parameterized version, e.g. for treewidth?

2/2

What Makes B-Factor Easy

Definition (Max-Gap)

For finite ∅ 6= B ⊆ N, max-gapB is the largest d such that at most d consecutive
numbers are missing in B.
Formally, there is an a with {a; a+ 1; : : : ; a+ d + 1} ∩ B = {a; a+ d + 1}.

Example: B = {1; 3; 6} has two gaps: one of size 1 and one of size 2 = max-gapB.

Theorem (Cornuéjols 1988)

B-Factor is solvable in polynomial time if max-gapB ≤ 1.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 (using two different
sets).
Stronger hardness than Cornuéjols was known implicitly in the literature (Dalmau
and Ford 2003).

What do we know about the parameterized version, e.g. for treewidth?

2/2

	Conclusion
	Appendix

