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General Factor Problem

General Factor
Input: A simple graph G = (V; E) and for each v ∈ V a set Bv ⊆ N.
Task: Check if there is a solution S ⊆ E, i.e. degS(v) ∈ Bv for all v ∈ V .

Generalizes Perfect Matching by setting Bv = {1} for all v ∈ V .

B-Factor
General Factor when Bv = B for all v for some fixed, finite set B ⊆ N.

What makes B-Factor easy or hard to solve: Size of the sets? Largest number?

Max-Gap
For finite ∅ 6= B ⊆ N, max-gapB is the largest d such that there is an a with
[a; a+ d + 1] ∩ B = {a; a+ d + 1}.
(At most d consecutive numbers are missing in B.)

Example: {2; 4; 8} has gaps of size 1 and 3 = max-gap.
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Known Results

Theorem (Cornuéjols ’88)

B-Factor is solvable in polynomial time if max-gapB ≤ 1.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 but uses two lists
({0; 3} and {1}).

What about the graph structure? ⇒ Treewidth, pathwidth, . . .

Theorem (Arulselvan et al. ’18)

B-Factor can be solved in time (maxB + 1)3twnO(1), given a tree decomposition
of width tw.

Open Questions: Is this optimal? Can we show lower bounds?
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Our Results

Theorem (Upper Bound)

(maxB + 1)twnO(1) algorithm for counting solutions of a certain size given a tree
decomposition of width tw of the graph.

Idea: Standard dynamic programming on tree decomposition combined with
known convolution techniques for join nodes (van Rooij ’20).

Theorem (Lower Bound)

Fix a B ⊆ N with max-gapB > 1 and 0 =∈ B. For all " > 0, there is no
(maxB + 1− ")twnO(1) algorithm for B-Factor, given a tree decomposition of
treewidth tw, unless SETH fails.

(Consequence of) Strong Exponential Time Hypothesis

There is no ‹ > 0 such that CNF-SAT can be solved in time (2− ‹)n on formulas
with n variables.

4/7



Our Results

Theorem (Upper Bound)

(maxB + 1)twnO(1) algorithm for counting solutions of a certain size given a tree
decomposition of width tw of the graph.

Idea: Standard dynamic programming on tree decomposition combined with
known convolution techniques for join nodes (van Rooij ’20).

Theorem (Lower Bound)

Fix a B ⊆ N with max-gapB > 1 and 0 =∈ B. For all " > 0, there is no
(maxB + 1− ")twnO(1) algorithm for B-Factor, given a tree decomposition of
treewidth tw, unless SETH fails.

(Consequence of) Strong Exponential Time Hypothesis

There is no ‹ > 0 such that CNF-SAT can be solved in time (2− ‹)n on formulas
with n variables.

4/7



Lower Bound: High Level Construction

Cannot use n ×m grid: high treewidth → no tight lower bound.
Group log(maxB + 1) variables: Grid with n= log(maxB + 1) rows.
Encode partial assignments by selection of up to maxB edges.
Check at each crossing point if the partial assignment satisfies the clause.
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Treewidth is n= log(maxB + 1) +O(1) ⇒ (maxB + 1− ")twnO(1) lower bound.
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Realizing Relations

It remains to model the check at the crossing points:
Define relations with the correct behaviour.
Replace these relations by graphs with the same behaviour (realizations).

Based on a result from Curticapean and Marx (2016) this boils down to:
Forcing edges to be in the solution.
Getting equality gadgets (either none or all incident edges are selected).

Version Decision Maximization Counting
Assumptions max-gapB > 1 B non-trivial

minB > 0

Equality Use the gap and forced edges Use interpolation
with weights to
reduce to forced

edges
Forced Edge (minB + 1)-clique High girth graphs

to get a penalty
Interpolation
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Conclusion

Upper Bounds for General Factor
We can count in time (M + 1)twnO(1) solutions of a certain size given a tree
decomposition of width tw. (M is maximum over all sets Bv .)

Lower Bounds Parameterizing by Treewidth
Fix a finite B ⊆ N. For any " > 0, there is no (maxB + 1− ")twnO(1) algorithm
for the following problems, given a tree decomposition of width tw unless SETH
(resp. #SETH) fails:
B-Factor and Min-B-Factor if 0 =∈ B and max-gapB > 1,
Max-B-Factor if max-gapB > 1,
#B-Factor if B 6= ∅; {0}.

Bounds Parameterizing by Cutwidth
Analogous upper and lower bounds for a 2cutwnO(1) algorithm, when given a linear
layout of width cutw.
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