

Degrees and Gaps:

Tight Complexity Results of General Factor Problems
Parameterized by Treewidth and Cutwidth
ICALP 2021

Dániel Marx*, Govind Sankar†, and Philipp Schepper*

* CISPA Helmholtz Center for Information Security

† Indian Institute of Technology Madras

14 July 2021

General Factor Problem

General Factor

Input: A simple graph G = (V, E) and for each $v \in V$ a set $B_v \subseteq \mathbb{N}$.

Task: Check if there is a solution $S \subseteq E$, i.e. $\deg_S(v) \in B_v$ for all $v \in V$.

Generalizes PERFECT MATCHING by setting $B_v = \{1\}$ for all $v \in V$.

General Factor Problem

General Factor

Input: A simple graph G = (V, E) and for each $v \in V$ a set $B_v \subseteq \mathbb{N}$.

Task: Check if there is a solution $S \subseteq E$, i.e. $\deg_S(v) \in B_v$ for all $v \in V$.

Generalizes PERFECT MATCHING by setting $B_v = \{1\}$ for all $v \in V$.

B-FACTOR

General Factor when $B_v = B$ for all v for some fixed, finite set $B \subseteq \mathbb{N}$.

What makes B-FACTOR easy or hard to solve: Size of the sets? Largest number?

General Factor Problem

General Factor

Input: A simple graph G = (V, E) and for each $v \in V$ a set $B_v \subseteq \mathbb{N}$.

Task: Check if there is a solution $S \subseteq E$, i.e. $\deg_S(v) \in B_v$ for all $v \in V$.

Generalizes PERFECT MATCHING by setting $B_v = \{1\}$ for all $v \in V$.

B-FACTOR

General Factor when $B_v = B$ for all v for some fixed, finite set $B \subseteq \mathbb{N}$.

What makes B-FACTOR easy or hard to solve: Size of the sets? Largest number?

Max-Gap

For finite $\emptyset \neq B \subseteq \mathbb{N}$, max-gap B is the largest d such that there is an a with $[a, a+d+1] \cap B = \{a, a+d+1\}$.

(At most d consecutive numbers are missing in B.)

Example: $\{2, 4, 8\}$ has gaps of size 1 and 3 = max-gap.

Known Results

Theorem (Cornuéjols '88)

B-FACTOR is solvable in polynomial time if max-gap $B \leq 1$.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 but uses two lists ({0,3} and {1}).

Known Results

Theorem (Cornuéjols '88)

B-FACTOR is solvable in polynomial time if max-gap $B \leq 1$.

Cornuéjols implicitly showed NP-hardness when max-gap > 1 but uses two lists ($\{0,3\}$ and $\{1\}$).

What about the graph structure? \Rightarrow Treewidth, pathwidth, ...

Theorem (Arulselvan et al. '18)

B-FACTOR can be solved in time $(\max B + 1)^{3\text{tw}} n^{\mathcal{O}(1)}$, given a tree decomposition of width tw.

Open Questions: Is this optimal? Can we show lower bounds?

Our Results

Theorem (Upper Bound)

 $(\max B+1)^{\mathrm{tw}} n^{\mathcal{O}(1)}$ algorithm for counting solutions of a certain size given a tree decomposition of width tw of the graph.

Idea: Standard dynamic programming on tree decomposition combined with known convolution techniques for join nodes (van Rooij '20).

Our Results

Theorem (Upper Bound)

 $(\max B+1)^{\mathrm{tw}} n^{\mathcal{O}(1)}$ algorithm for counting solutions of a certain size given a tree decomposition of width tw of the graph.

Idea: Standard dynamic programming on tree decomposition combined with known convolution techniques for join nodes (van Rooij '20).

Theorem (Lower Bound)

Fix a $B\subseteq\mathbb{N}$ with max-gap B>1 and $0\notin B$. For all $\varepsilon>0$, there is no $(\max B+1-\varepsilon)^{\operatorname{tw}} n^{\mathcal{O}(1)}$ algorithm for B-FACTOR, given a tree decomposition of treewidth tw, unless SETH fails.

(Consequence of) STRONG EXPONENTIAL TIME HYPOTHESIS

There is no $\delta > 0$ such that CNF-SAT can be solved in time $(2 - \delta)^n$ on formulas with n variables.

Lower Bound: High Level Construction

Cannot use $n \times m$ grid: high treewidth \rightarrow no tight lower bound.

- Group $\log(\max B + 1)$ variables: Grid with $n/\log(\max B + 1)$ rows.
- Encode partial assignments by selection of up to $\max B$ edges.
- Check at each crossing point if the partial assignment satisfies the clause.

Treewidth is $n/\log(\max B + 1) + \mathcal{O}(1) \Rightarrow (\max B + 1 - \varepsilon)^{\operatorname{tw}} n^{\mathcal{O}(1)}$ lower bound.

Realizing Relations

It remains to model the check at the crossing points:

- Define relations with the correct behaviour.
- Replace these relations by graphs with the same behaviour (*realizations*).

Realizing Relations

It remains to model the check at the crossing points:

- Define relations with the correct behaviour.
- Replace these relations by graphs with the same behaviour (*realizations*).

Based on a result from Curticapean and Marx (2016) this boils down to:

- Forcing edges to be in the solution.
- Getting equality gadgets (either none or all incident edges are selected).

Realizing Relations

It remains to model the check at the crossing points:

- Define relations with the correct behaviour.
- Replace these relations by graphs with the same behaviour (*realizations*).

Based on a result from Curticapean and Marx (2016) this boils down to:

- Forcing edges to be in the solution.
- Getting equality gadgets (either none or all incident edges are selected).

Version	Decision	Maximization	Counting
Assumptions	max-gap $B>1$		B non-trivial
	$\min B > 0$		
Equality	Use the gap and forced edges		Use interpolation with weights to reduce to forced edges
Forced Edge	$(\min B + 1)$ -clique	High girth graphs to get a penalty	Interpolation

Conclusion

Upper Bounds for General Factor

We can count in time $(M+1)^{\mathrm{tw}} n^{\mathcal{O}(1)}$ solutions of a certain size given a tree decomposition of width tw. (M is maximum over all sets B_{ν} .)

Conclusion

Upper Bounds for General Factor

We can count in time $(M+1)^{\text{tw}} n^{\mathcal{O}(1)}$ solutions of a certain size given a tree decomposition of width tw. $(M \text{ is maximum over all sets } B_{\nu}.)$

Lower Bounds Parameterizing by Treewidth

Fix a finite $B\subseteq \mathbb{N}$. For any $\varepsilon>0$, there is no $(\max B+1-\varepsilon)^{\operatorname{tw}} n^{\mathcal{O}(1)}$ algorithm for the following problems, given a tree decomposition of width tw unless SETH (resp. #SETH) fails:

- *B*-FACTOR and MIN-*B*-FACTOR if $0 \notin B$ and max-gap B > 1,
- Max-B-Factor if max-gap B > 1,
- #B-Factor if $B \neq \emptyset$, $\{0\}$.

Conclusion

Upper Bounds for General Factor

We can count in time $(M+1)^{\mathrm{tw}} n^{\mathcal{O}(1)}$ solutions of a certain size given a tree decomposition of width tw. $(M \text{ is maximum over all sets } B_{\nu}.)$

Lower Bounds Parameterizing by Treewidth

Fix a finite $B\subseteq \mathbb{N}$. For any $\varepsilon>0$, there is no $(\max B+1-\varepsilon)^{\operatorname{tw}} n^{\mathcal{O}(1)}$ algorithm for the following problems, given a tree decomposition of width tw unless SETH (resp. #SETH) fails:

- *B*-FACTOR and MIN-*B*-FACTOR if $0 \notin B$ and max-gap B > 1,
- Max-B-Factor if max-gap B > 1,
- #B-FACTOR if $B \neq \emptyset$, $\{0\}$.

Bounds Parameterizing by Cutwidth

Analogous upper and lower bounds for a $2^{\text{cutw}} n^{\mathcal{O}(1)}$ algorithm, when given a linear layout of width cutw.