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Motivation



Peano Numbers in Modern, Lightweight Twitter Textmessages

(MLTT)

Tweets Tweets & Antworten

¥ Angehefteter Tweet

N Every Peano Number @every_peano - 21. Apr. 2015 v
Zero

O 1 79 Q) 144

Every Peano Number @every_peano - 53 Min. v
[\ Succ

Every Peano Number @every peano
Succ twitter.com/every_peano/st...

Q T QO 1

Source: https://twitter.com/every_peano
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https://twitter.com/every_peano

Motivation

e We have already seen several definitions (von Neumann, Church,
Scott, ...)
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e We have already seen several definitions (von Neumann, Church,
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e Try to embed them in type theory?
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e We have already seen several definitions (von Neumann, Church,
Scott, ...)

e Try to embed them in type theory?
= Maybe not possible or the best/easiest/most elegant/. .. way!
e MLTT introduces primitive constructions

= We want to find a “good” foundation of mathematics!
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Definition of Natural Numbers

Define N as inductive type:

———— (nat0) n:N
0:N <, (natS)
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Definition of Natural Numbers

Define N as inductive type:

—— (nat0) n:N
0:N <, (natS)

Comes with elimination rule Ry:
Ry : (VP :N— U)P0 — ((Vn:N)P(Sn)) — (Vn:N)Pn

H:PO f:(Vm:N)P(Sm)
Ry PHf:(¥Vn:N)Pn

P:N— U
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Definition of Natural Numbers

Define N as inductive type:

—— (nat0) n:N
0:N <, (natS)

Comes with elimination rule Ry:
Ry : (VP :N— U)P0 — ((Vn:N)P(Sn)) — (Vn:N)Pn

H:PO f:(Vm:N)P(Sm)
Ry PHf:(¥Vn:N)Pn

P:N— U

Comes with computation rules:
Ry PHfO~H
Ry P Hf (Sn)>=fn
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Recap: Equality

e Last week we have seen several definitions of equality.
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Recap: Equality

e Last week we have seen several definitions of equality.

e From now on, we use inductive equality:

W(A: U),(a: A
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Recap: Equality

e Last week we have seen several definitions of equality.

e From now on, we use inductive equality:

W(A: U),(a: A

e And the corresponding eliminator R—:
R_:(VA: U)VP:A— U)(Va:A)(P a)— (Vb:A)a=b—Pb

H1:Pa H2:a:b
R_APaH bH,:Pb

(A:U),(P:A—= U),(a,b: A)
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Peano S 0



The first Peano Axioms

Zero is a natural number:
0:N

The successor of each natural number is a natural number:

(Vn)(n:N) — (Sn: N)
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The first Peano Axioms

Zero is a natural number:
0:N

The successor of each natural number is a natural number:

(Vn)(n:N) — (Sn: N)

True by the definition of N
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The first Peano Axioms

Zero is a natural number:
0:N

The successor of each natural number is a natural number:

(Vn)(n:N) — (Sn: N)

True by the definition of N

Zero is not the successor of any number:
(Yn:N)Sn #0
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Proof of Disjointness

Zero is not the successor of any number:

(Yn:N)Sn # 0
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Proof of Disjointness
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Proof of Disjointness

Zero is not the successor of any number:

(Yn:N)Sn # 0

(Am.Ruy(A_.U)L(A_.T)m)0
1
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Proof of Disjointness

Zero is not the successor of any number:

(Vn:N)Sn #£0

(Am.Ry(A_.U)L(A_.T)m)Sn Sn=0
(Am.Ry(A_.U)L(A_.T)m)0
1

[R=
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Proof of Disjointness

Zero is not the successor of any number:

(Vn:N)Sn #£0

T
(Am.Ry(A_.U)L(A_.T)m)Sn Sn=20 P
(Am.Ry(A_.U)L(A_.T)m)0 -
1
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Proof of Disjointness

Zero is not the successor of any number:

(Yn:N)Sn # 0

?/
Om ReOU)LO_T)mSn  Sn=20 g
(Am.Ry(A-.U)L(A-.T)m)0 -
1
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Proof of Disjointness

Zero is not the successor of any number:

(Vn:N)Sn #£0

?/
Om ReOU)LO_T)mSn  Sn=20 g
Om RO UYL T)m)0 -
1

The resulting proof term:

An H.R- N (Am.Ry(A_.U)L(A_T)m) (Sn) 1 0 H
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Injectivity

Two numbers are equal if their successors are equal:
(Vn,m:N)Sn=Sm —n=m
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Injectivity

Two numbers are equal if their successors are equal:
(Vn,m:N)Sn=Sm —n=m

The predecessor

7= Ry(A_.N)O(Am.m)n

70 = Rn(A_.N)O(Am.m)0) > 0
w(Sn) = Ry(A_N)O(Am.m)(Sn) = n
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Proof of Injectivity
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Proof of Injectivity
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Proof of Injectivity

7w(Sn) = 7(Sm) w(Sm)=m
w(Sn) =m ~ 7w(Sn) =n
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Proof of Injectivity

w(Sn) = w(Sn) Sn=5m
7(Sn) = w(Sm) - w(Sm)=m
w(Sn) =m ~ 7w(Sn)=n
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Proof of Injectivity

H

w(Sn) = 7w(Sn) Q Sn=Sm
7(Sn) = w(Sm) - 7w(Sm)=m
w(Sn) =m = w(Sn)=n
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Proof of Injectivity

H

w(Sn) = 7w(Sn) Q Sn=Sm
7(Sn) = w(Sm) - 7w(Sm)=m
w(Sn) =m = w(Sn)=n

The resulting proof term:

An m H.R_(\k.k = m)(w(Sn))
(R=(Xk.m(Sn) = k)(m(Sm))
(R=(Ak.m(5n) = wk)(Sn)Q(Sm)H)
m(predS m))
n(predS n)
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Induction |

e In ZF induction follows by definition of the natural numbers

e Recursion (computation) must be proven by a theorem!
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Induction |
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e Comes for free in type theory: recursion = induction

e Induction extends case distinction by assumption:
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Induction |

e In ZF induction follows by definition of the natural numbers
e Recursion (computation) must be proven by a theorem!
e Comes for free in type theory: recursion = induction

e Induction extends case distinction by assumption:

Remember the elimination rule Ry:
Ry : (YP:N— U)P0 — ((Vn: N)P(Sn)) — (¥n:N)Pn

H:PO f:(Vm:N)P(Sm)
Ry P Hf:(Vn:N)Pn

P:N—U
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Induction |

e In ZF induction follows by definition of the natural numbers
e Recursion (computation) must be proven by a theorem!
e Comes for free in type theory: recursion = induction

e Induction extends case distinction by assumption:

Extended to induction rule /y:
Iv:(YP:N— U)PO— ((Vn:N)P n— P(Sn)) — (Vn:N)Pn

H:PO f:(Vm:N)P m — P(Sm)
Iy P Hf:(Vn:N)Pn

P:N—U
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Induction |1

(YP:N—= U)P 0 — ((Yn:N)P n— P(Sn)) — (Vn:N)P n
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Induction |1

(YP:N—= U)P 0 — ((Yn:N)P n— P(Sn)) — (Vn:N)P n

Proof
Exactly Iy
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Induction |1

(YP:N—= U)P 0 — ((Yn:N)P n— P(Sn)) — (Vn:N)P n

Proof
Exactly Iy

We can define case distinction by induction.

Proof: Exercise.

Philipp Schepper — Peano Arithmetics in MLTT — December 4, 2018 11



Less or Equal




Less or Equal — Definition

e We have seen an intuitive ordering of the numbers in ZF-set theory
(i.e. €).
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Less or Equal — Definition

e We have seen an intuitive ordering of the numbers in ZF-set theory
(i.e. €).

e Does such a relation come for free in type theory? No!

Define < as an inductive predicate (~ type):

< (lel) with n: N

m: N n<m
n<Sm

(le2) with n: N
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Less or Equal — Definition

e We have seen an intuitive ordering of the numbers in ZF-set theory
(i.e. €).

e Does such a relation come for free in type theory? No!

Define < as an inductive predicate (~ type):

< (lel) with n: N

m: N n<m
n<Sm

(le2) with n: N

This definition is not unique, but complete and sound!
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Less or Equal — Induction

We have already seen “normal” induction and the inductive equality.
Apply these concepts to more complicated types (i.e. predicates).
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Less or Equal — Induction

We have already seen “normal” induction and the inductive equality.
Apply these concepts to more complicated types (i.e. predicates).

I< is of type
V- N)(P:N=U)Pn— ((Ym:N)n<m— P m— P(Sm)) —
(Vk:N)n< k — P k
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Less or Equal — Induction

We have already seen “normal” induction and the inductive equality.
Apply these concepts to more complicated types (i.e. predicates).

I< is of type
V- N)(P:N=U)Pn— ((Ym:N)n<m— P m— P(Sm)) —
(Vk:N)n< k — P k

Hi:Pn f:(Ym:N)n<m— P m— P(Sm) Hy:n<m
ISnPHlmeQ:Pm
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Peano S(S 0)




More Peano Axioms

(Vn:N)n<n

Proof: Exactly the first constructor of <.
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More Peano Axioms

(Vn:N)n<n

Proof: Exactly the first constructor of <.

(Vn,mk - N)n<m—-m<k—=n<k

Proof: Exercise.
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More Peano Axioms

(Vn:N)n<n

Proof: Exactly the first constructor of <.

(Vn,mk - N)n<m—-m<k—=n<k

Proof: Exercise.

(Vn,m:N)n<m—-m<n—n=m
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Proof of Antisymmetry

We use the following unproven lemma:

(Vn:N)Sn<0— L

Proof by induction on n and case distinction of m:
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Proof of Antisymmetry

We use the following unproven lemma:

(Vn:N)Sn<0— L

Proof by induction on n and case distinction of m:

e n=0,m=0: Show: 0<0—-0<0—-0<0V
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Proof of Antisymmetry

We use the following unproven lemma:

Lemma
(Yn:N)Sn <0 — L
Proof by induction on n and case distinction of m:

e n=0,m=0: Show: 0<0—-0<0—-0<0V
e n=0,m=5m": Show 0 < Sm’' — Sm' <0 — 0= Sm’
v’ by lemma and exfalso
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Proof of Antisymmetry

We use the following unproven lemma:

Lemma
(Vn:N)Sn<0— L

Proof by induction on n and case distinction of m:

e n=0,m=0: Show: 0<0—-0<0—-0<0V

e n=0,m=5m": Show 0 < Sm’' — Sm' <0 — 0= Sm’
v’ by lemma and exfalso

e n=5n",m=0: Show Sn’ <0 —-0<S5n" — Sn" =0
v’ by lemma and exfalso
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Proof of Antisymmetry

We use the following unproven lemma:

Lemma
(Vn:N)Sn<0— L

Proof by induction on n and case distinction of m:

e n=0,m=0: Show: 0<0—-0<0—-0<0V
e n=0,m=5m": Show 0 < Sm’' — Sm' <0 — 0= Sm’
v’ by lemma and exfalso
e n=5n",m=0: Show Sn’ <0 —-0<S5n" — Sn" =0
v’ by lemma and exfalso
e n=5S"m=5Sm" IH:(Vm:N)n <m—-m<n —n=m.
Show: Sn’ < Sm' — Sm’ < Sn’ — Sn’ = Sm'.
v’ by injectivity and /H.
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More Peano Axioms

(Yn,m:N)n<mvm<n

Proof: By induction on n, case distinction on m, analysing the IH, and
using 0 < nand n < m — Sn < Sm (left as exercise).
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More Peano Axioms

(Yn,m:N)n<mvm<n

Proof: By induction on n, case distinction on m, analysing the IH, and
using 0 < nand n < m — Sn < Sm (left as exercise).

Definition of strictly less (<)
n<m:=5<m (Vn,m:N)
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More Peano Axioms

(Yn,m:N)n<mvm<n

Proof: By induction on n, case distinction on m, analysing the IH, and
using 0 < nand n < m — Sn < Sm (left as exercise).

Definition of strictly less (<)
n<m:=51<m (VYn,m:N)

Now we can define a variant of the classical induction:
(VP:N—= U)(Yn:N)(Ym:Nym<n— P m)— Pn)—
(Yn:N)P n

Proof

By induction on n. Details left as exercise.
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Wellfoundedness

e First attempt: Use classical approach:

(M0 #APCN)(3ne P)(Yme P)n<m
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e First attempt: Use classical approach:
(M0 #APCN)(3ne P)(Yme P)n<m

e How to instantiate the 37
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Wellfoundedness

e First attempt: Use classical approach:
(V0 # P CN)(3ne P)(Yme P)n<m
e How to instantiate the 37

Only possible for decidable sets (= propositions).
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Wellfoundedness

e First attempt: Use classical approach:

(M0 #APCN)(3ne P)(Yme P)n<m
e How to instantiate the 37

Only possible for decidable sets (= propositions).
e Need different approach!

Definition of inductive predicate WF

(Ym:N)ym<n— WF m
WF n

(WFI) with n: N
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Wellfoundedness

e First attempt: Use classical approach:

(M0 #APCN)(3ne P)(Yme P)n<m
e How to instantiate the 37

Only possible for decidable sets (= propositions).
e Need different approach!

Definition of inductive predicate WF

(Ym:N)ym<n— WF m
WF n

(WFI) with n: N

Every descending chain ny > ny > ... is finite: (VYn: N)WF n
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
Let m < Sn > Sm < Sn MY 1 m <n
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:
e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
Let m < Sn > Sm < Sn MY 1 m <n
Now do a case distinction on H:
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
Let m < Sn > Sm < Sn injec:t;\/ity H:m<n
Now do a case distinction on H:

e m=n: v [H is a solution
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
Let m < Sn > Sm < Sn injec:t;\/ity H:m<n
Now do a case distinction on H:

e m=n: v [H is a solution
e m<n’: n— Sn’ = Show WF m.
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
Let m < Sn > Sm < Sn injec:t;\/ity H:m<n
Now do a case distinction on H:

e m=n: v [H is a solution
e m<n’: n— Sn’ = Show WF m.
Using IH, it remains to show m < n = Sm < Sn’.
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Proof of Wellfoundedness |

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Induction on n:

e n=0: Show (Vm:N)m<0— WF m
v by (Vm:N)Sm < 0 — L and exfalso

e n — Sn: Given /Hn: WF n. Show (Vm : N)m < Sn — WF m.
Let m < Sn > Sm < Sn injec:t;\/ity H:m<n
Now do a case distinction on H:

e m=n: v [H is a solution

e m<n’: n— Sn’ = Show WF m.
Using IH, it remains to show m < n = Sm < Sn’.
v since (Vn,m:N)n < m — Sn < Sm
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Proof of Wellfoundedness |l

(Vm:N)m<n— WF m
WF n

Want to show for all n: N:

Simplified proofterm:

An. (k. WF k)
(WFI 0 (Am, H. match (notEqualZero m H) with end))
(K, IHn. WFI(Sk)
(Am, H.match (removeS m k H) with
|[lel _+— XHk, _.IHk
le2 _ m' H1
AHK, .
(match IHk with WFI _ x — x end)m(leS m m' H1)
end /Hn H))n

match = syntactic sugar for use of eliminator
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Working with Natural Numbers




Addition |

Definition of +
(Yn,m : N)add m n:= Iy(A_N)m(A_k.Sk)n
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Addition |

Definition of +
(Yn,m : N)add m n:= Iy(A_N)m(A_k.Sk)n

Example
3+4+2>*"add 3 (5(50)) = S(add 3 (S0)) > S(S(add 3 0)) = S(5(3))
=* 5(5(5(5(50)))) =*5
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Addition |

Definition of +
(Yn,m : N)add m n:= Iy(A_N)m(A_k.Sk)n

Example

3+4+2>*"add 3 (5(50)) = S(add 3 (S0)) > S(S(add 3 0)) = S(5(3))
=* 5(5(5(5(50)))) =*5

(Yn,m, k :N) (n+m)+ k=n+(m+ k)

Follows by induction on k.
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Addition Il

(Vn:N)n+0=n
(Yn,m : N)n+ Sm = S(n+ m)
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Addition Il

(Vn:N)n+0=n
(Yn,m : N)n+ Sm = S(n+ m)

While the above follows by computation and equality, the following needs
induction:

(Vn:N)O+n=n
(Yn,m :N)Sn+ m = S(n+ m)
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Addition Il

(Vn:N)n+0=n
(Yn,m : N)n+ Sm = S(n+ m)

While the above follows by computation and equality, the following needs
induction:

(Vn:N)O+n=n
(Yn,m :N)Sn+ m = S(n+ m)

Using these axioms and lemmas we can show:

(Vn,m:N)n+m=m+n

Proof: Exercise by proving the lemmas first.

Philipp Schepper — Peano Arithmetics in MLTT — December 4, 2018 21



Multiplication

As in all other encodings: We use addition to define multiplication:

Definition of
(Ym,n: N)mult m n:= Iy(A_.N)O(A_k.k + m)n
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Multiplication

As in all other encodings: We use addition to define multiplication:

Definition of
(Ym,n: N)mult m n:= Iy(A_.N)O(A_k.k + m)n

This definition satisfies the usual properties:

(Ym:N)m=0=0
(Yn,m : N)Ym*Sn = (m=n)+m
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Multiplication

As in all other encodings: We use addition to define multiplication:

Definition of
(Ym,n: N)mult m n:= Iy(A_.N)O(A_k.k + m)n

This definition satisfies the usual properties:

(Ym:N)m=0=0
(Yn,m : N)Ym*Sn = (m=n)+m

Other lemmas can also be shown (most of them by induction).
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
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This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!

Definition of truncating —
(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!
Definition of truncating —

(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50))
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This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!
Definition of truncating —

(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!
Definition of truncating —

(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50)) > w(minus 1 (S0))
>~ m(m(minus 1 0))
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!
Definition of truncating —

(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50)) > w(minus 1 (S0))
= m(m(minus 1 0)) >=* m(7w(S0)) > 7(0) = 0
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!
Definition of truncating —

(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50)) > w(minus 1 (S0))

= m(m(minus 1 0)) >=* m(7w(S0)) > 7(0) = 0
2 —2>* minus 2 (5(50))
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!
Definition of truncating —

(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50)) > w(minus 1 (S0))

= m(m(minus 1 0)) >=* m(7w(S0)) > 7(0) = 0
2 —2>" minus 2 (5(50)) > m(minus 2 (50))
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!

Definition of truncating —
(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50)) > w(minus 1 (S0))
= m(m(minus 1 0)) >=* m(7w(S0)) > 7(0) = 0
2 —2>" minus 2 (5(50)) > m(minus 2 (50))
= m(w(minus 2 0))
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Subtraction |

This definition of numbers works out very well and is easy to use.
Why not extend the system to subtraction?
= We have to deal with negative numbers!

= Use truncating minus ignoring negative numbers!

Definition of truncating —
(Ym, n: N)minus m n:= Iy(A_.N)m(A\_k.w k)n

Example
1—2>* minus 1 (5(50)) > w(minus 1 (S0))
= m(m(minus 1 0)) >=* m(7w(S0)) > 7(0) = 0
2 —2>" minus 2 (5(50)) > m(minus 2 (50))
= m(w(minus 2 0)) >=* w(7(5(50))) =* 0
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Subtraction Il

Proof of L

Same as before holdsfor0O —1and1—-1: =0—-1=0=1—1.
Add 1 on bothsides=0—-14+1=1—-1+1=0=1
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Proof of L

Same as before holdsfor0O —1and1—-1: =0—-1=0=1—1.
Add 1 on bothsides=0—-14+1=1—-1+1=0=1

4 Because of the following:

The associativity and commutativity does not hold for expressions with
minus and plus.
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Subtraction Il

Proof of L

Same as before holdsfor0O —1and1—-1: =0—-1=0=1—1.
Add 1 on bothsides=0—-14+1=1—-1+1=0=1

4 Because of the following:

The associativity and commutativity does not hold for expressions with
minus and plus.

Associativity: Commutativity:
1+(1-2)>=*14+0>*1 (1+2)—-2>*3-2%»*1
1+1)—2%*2-2>*0 1-2)+2>*0+2>*2
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Subtraction Il

No associativity and commutativity between + and —. But nevertheless:

(Ym:Nym—-0=m
(VYn,m :N)(m+n)—n=m
(Yn:N)nh—n=0

And therefore (Vn,m : N)(m+n) —n= m+ (n— n).

How to read: Truncating minus is not too much wrong.
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Subtraction Il

No associativity and commutativity between + and —. But nevertheless:

(Ym:Nym—-0=m
(VYn,m :N)(m+n)—n=m
(Yn:N)nh—n=0

And therefore (Vn,m : N)(m+n) —n= m+ (n— n).

How to read: Truncating minus is not too much wrong.

There are ways to encode negative numbers defining them according to
the definition on paper: eg. Nx NN+ N B x N
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Conclusion




Conclusion — Comparison to ZF

The Good

e Recursion and induction is built-in
e |deas can be directly extended to lists

e There are tools for working in type theory
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Conclusion — Comparison to ZF

The Good

e Recursion and induction is built-in
e |deas can be directly extended to lists

e There are tools for working in type theory
The Bad

e Comparison is not built-in
e Size of proof terms grow fast

e Inherits all “problems” of type theory (e.g. no XM)
General Problems

e Correct/Complete subtraction requires a bit more work

e Yet another way for a foundation
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Questions?



Exercises

1. Show that case distinction is not necessary.

2. Remember that we defined complete induction in the following way:
(VPN — U)((Vn:N)(VYm:N)ym<n— P m)— Pn)— (Vn:
N)P n. Give a proof (term).

3. To show the linearity we used the following unproven lemma:
(Yn,m:N):n<m— Sn<Sm.

Now prove this lemma.
4. In the following we show that our definition of addition is
commutative.
e Show (Vn:N)O+n=n
e Show (Vn,m:N)Sn+ m = S(n+ m)
e Now conclude that (Vn, m: N)n+ m = m + n).

5. Proof that < is transitive.

Hint: Doing an induction on a number is probably not the best idea!
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