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Motivation

I Traveling Salesman Problem (TSP) is NP-hard
⇒ Unlikely to have fast algorithms

I Solve relaxations instead or proof their hardness
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Bitonic TSP

Definition: Bitonic TSP
Input: n nodes in the plane (with distinct x-coordinates)
Output: A shortest hamiltonian cycle consisting of two monotone
path with respect to their left-right order.
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Bitonic TSP

Definition: Bitonic TSP
Input: n nodes in the plane (with distinct x-coordinates)
Output: A shortest hamiltonian cycle consisting of two monotone
path with respect to their left-right order.

Theorem
Bitonic TSP can be solved in O(n2) time.

Since 1991 finding this algorithm is an exercise for students!
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Dynamic Program for Bitonic TSP
I Assume nodes are ordered s.t. the left-most node is v1 and the

right-most node is vn
I A ∈ Rn×n

I A[i , j ] := sum of the lengths of the two shortest disjoint bitonic
tours both starting at v1, ending at i and j < i , and covering all
points {v1, . . . , vi}.

1. A[2, 1] := d(v1, v2)

2. For i = 2, . . . , n − 1:
3. For j = 1, . . . , i − 1:
4. A[i + 1, j ] := A[i , j ] + d(vi , vi+1)

5. A[i + 1, i ] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))
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Observations

I New values depend only on results from previous step
I Most values are changed equally (+d(vi , vi+1))
I Search for minimum
I One new entry in table, i.e. A[i + 1, i ]

⇒ Speed up each operation!
I Store only current values ( fix i)
I Treat values as points with associated weight A[i , k]

I Perform bulk updates on weights (+d(vi , vi+1))
I Nearest-neighbor query
I Insert one new value
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The required data structure

I Fast setup time and dynamic changeable
I Store weighted points in the plane
I Perform nearest-neighbor query
I Bulk updates (change weights of all nodes simultaneously)
I Insert point to data structure

Philipp Schepper June 12, 2018 7 / 19
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Additively weighted Voronoi Diagrams

q ∈ C(pi ) :⇐⇒
∀j 6= i : d(q, pi ) + wi ≤ d(q, pj) + wj

Find arg min1≤k<i (A[i , k] + d(vk , vi+1))
⇒ Find k s.t. vi+1 ∈ C(pk).

I Setup: O(n log n)

I Nearest neighbor search: O(log2 n)

I Bulk updates: O(log n)

I Insert point: O(log2 n)

Image from http:
//d.hatena.ne.jp/kaiseh/
20091010/1255198573 .

Philipp Schepper June 12, 2018 8 / 19

http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573


Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Additively weighted Voronoi Diagrams

q ∈ C(pi ) :⇐⇒
∀j 6= i : d(q, pi ) + wi ≤ d(q, pj) + wj

Find arg min1≤k<i (A[i , k] + d(vk , vi+1))
⇒ Find k s.t. vi+1 ∈ C(pk).

I Setup: O(n log n)

I Nearest neighbor search: O(log2 n)

I Bulk updates: O(log n)

I Insert point: O(log2 n)
Image from http:

//d.hatena.ne.jp/kaiseh/
20091010/1255198573 .

Philipp Schepper June 12, 2018 8 / 19

http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573


Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. A[2, 1] := d(v1, v2)

2. For i = 2, . . . , n − 1:
3. For j = 1, . . . , i − 1:
4. A[i + 1, j ] := A[i , j ] + d(vi , vi+1)

5. A[i + 1, i ] = min1≤k<i (A[i , k] + d(vk , vi+1))
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k-OPT

TSP is NP-hard ⇒ Unlikely to have a fast algorithm for exact solution

Different approach:
Start with “good” solution and change it locally.

Usually:
I One start with solution found by some heuristic
I Improve solution in several rounds
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The k-Opt Problems

Definition: (Proper) k-move

Replacement of k edges in a tour by k (different) edges such that the
new tour is valid.

Definition: k-Opt

Input: A complete undirected graph G along with a (symmetric)
distance function d : E (G )→ N, k ∈ N, and a tour T ⊆ E (G ).
Question: Is there a k-move that strictly improves the cost of T?

In k-Opt Optimization we ask for a k-move with largest cost
improvement.

Philipp Schepper June 12, 2018 11 / 19
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A first algorithm
Theorem
k-Opt Optimization can be solved in O(nk) time for fixed k .

Proof
Label the vertices s.t. the tour is v1, . . . , vn, v1

1. For i1 = 1, . . . , n − k + 1:
2. For i2 = i1 + 1, . . . , n − k + 2:
3. . . .

4. For ik = ik−1 + 1, . . . , n:
5. Remove edges {vij , vij+1} ∀j from T .
6. Check for each combination of points whether they form a
7. feasible tour and improve the cost.

Philipp Schepper June 12, 2018 12 / 19
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Assumption

Two removed/inserted edges do not share an endpoint!
Only to keep notation simpler.

Philipp Schepper June 12, 2018 13 / 19
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A fast algorithm for k-Opt Optimization

Definition: Interfering edges

Two removed edges interfere with each other in a k-move if they are
connected by an inserted edge.

Lemma 3.2
For any signature π, we can find a subset Eπ ⊆ {e1, . . . , ek} of at
least dk/3e removed edges that are pairwise non-interfering.

Theorem 6
For every fixed k ≥ 3, the k-Opt Optimization problem on an n-vertex
graph can be solved in O(nb2k/3c+1) time.

Philipp Schepper June 12, 2018 14 / 19
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A fast algorithm for k-Opt Optimization

Proof of Theorem 6
Graph G , k ∈ SetN

1. For all signatures π:
2. Compute Eπ and Ēπ = {a1, . . . , ak} \ Eπ
3. For all possible position of abstract edges ai ∈ Ēπ in G :
4. Insert the edges between these edges ( update cost)
5. Find optimal embedding of edges ai ∈ Eπ into G

Corollary

3-Opt Optimization and 4-Opt Optimization can be solved in O(n3)
time.

Philipp Schepper June 12, 2018 15 / 19
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Lower Bounds

Lemma 3.1
Negative Triangle can be reduced to 3-Opt in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Corollary

The algorithms for 3-Opt Optimization and 4-Opt Optimization are
optimal (assuming the APSP conjecture).
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Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Lower Bounds

Lemma 3.1
Negative Triangle can be reduced to 3-Opt in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Corollary

The algorithms for 3-Opt Optimization and 4-Opt Optimization are
optimal (assuming the APSP conjecture).

Philipp Schepper June 12, 2018 16 / 19



Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Proof of Lemma 3.1

I (G ,w) Negative Triangle instance with symmetric w
I Define 3-Opt instance with initial tour T = a1, b1, . . . , an, bn, a1:

I M := maxi,j∈[n] |w(vi , vj)|
I d(ai , bi ) = 0 ∀1 ≤ i ≤ n
I d(bn, a1) = d(bi , ai+1) = −3M ∀1 ≤ i < n
I d(ai , bj) = w(vi , vj) ∀1 ≤ i < j ≤ n − 1
I d(bi , aj) = w(vi , vj) ∀1 ≤ i < j − 1 ≤ n − 1
I d(ai , aj) = d(bi , bj) = 3M ∀i 6= j

Reduction requires O(n2) time.

Philipp Schepper June 12, 2018 17 / 19
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Further results

Lemma C.1
3-Opt can be reduced to Negative Triangle in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Theorem 5
There is a truly subcubic algorithm for 3-Opt if and only if there is
such an algorithm for APSP on weighted digraphs.

⇒ APSP equivalence for 3-Opt.
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Further results

Theorem 4
Bottleneck pyramidal (≈ bitonic) TSP with n ordered points in the
plane can be solved in O(n log3 n) time.

Theorem 7
Repeated 2-Opt Optimization can be solved in O(n log n) per iteration
after O(n2) preprocessing.

Theorem 8
For any fixed ε > 0, 2-Opt in the plane can be solved in O(n8/5+ε)
time, and 3-Optin the plane can be solved in O(n80/31+ε) expected
time.

Philipp Schepper June 12, 2018 19 / 19
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