
Fine-Grained Complexity Analysis
of Two Classic TSP Variants

Mark de Berg, Kevin Buchin,
Bart M. P. Jansen, and Gerhard Woeginger

43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016)

Philipp Schepper

June 12, 2018

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Outline

Introduction

Bitonic TSP

Faster k-OPT

Lower Bounds

Further results

Philipp Schepper June 12, 2018 2 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Motivation

I Traveling Salesman Problem (TSP) is NP-hard
⇒ Unlikely to have fast algorithms

I Solve relaxations instead or proof their hardness

Philipp Schepper June 12, 2018 3 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Motivation

I Traveling Salesman Problem (TSP) is NP-hard
⇒ Unlikely to have fast algorithms

I Solve relaxations instead or proof their hardness

Philipp Schepper June 12, 2018 3 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Bitonic TSP

Definition: Bitonic TSP
Input: n nodes in the plane (with distinct x-coordinates)
Output: A shortest hamiltonian cycle consisting of two monotone
path with respect to their left-right order.

Philipp Schepper June 12, 2018 4 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Bitonic TSP

Philipp Schepper June 12, 2018 4 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Bitonic TSP

Definition: Bitonic TSP
Input: n nodes in the plane (with distinct x-coordinates)
Output: A shortest hamiltonian cycle consisting of two monotone
path with respect to their left-right order.

Theorem
Bitonic TSP can be solved in O(n2) time.

Since 1991 finding this algorithm is an exercise for students!

Philipp Schepper June 12, 2018 4 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Dynamic Program for Bitonic TSP
I Assume nodes are ordered s.t. the left-most node is v1 and the

right-most node is vn
I A ∈ Rn×n

I A[i , j] := sum of the lengths of the two shortest disjoint bitonic
tours both starting at v1, ending at i and j < i , and covering all
points {v1, . . . , vi}.

1. A[2, 1] := d(v1, v2)

2. For i = 2, . . . , n − 1:
3. For j = 1, . . . , i − 1:
4. A[i + 1, j] := A[i , j] + d(vi , vi+1)

5. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 5 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Observations

I New values depend only on results from previous step
I Most values are changed equally (+d(vi , vi+1))
I Search for minimum
I One new entry in table, i.e. A[i + 1, i]

⇒ Speed up each operation!
I Store only current values (fix i)
I Treat values as points with associated weight A[i , k]

I Perform bulk updates on weights (+d(vi , vi+1))
I Nearest-neighbor query
I Insert one new value

Philipp Schepper June 12, 2018 6 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Observations

I New values depend only on results from previous step
I Most values are changed equally (+d(vi , vi+1))
I Search for minimum
I One new entry in table, i.e. A[i + 1, i]

⇒ Speed up each operation!

I Store only current values (fix i)
I Treat values as points with associated weight A[i , k]

I Perform bulk updates on weights (+d(vi , vi+1))
I Nearest-neighbor query
I Insert one new value

Philipp Schepper June 12, 2018 6 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Observations

I New values depend only on results from previous step
I Most values are changed equally (+d(vi , vi+1))
I Search for minimum
I One new entry in table, i.e. A[i + 1, i]

⇒ Speed up each operation!
I Store only current values (fix i)
I Treat values as points with associated weight A[i , k]

I Perform bulk updates on weights (+d(vi , vi+1))
I Nearest-neighbor query
I Insert one new value

Philipp Schepper June 12, 2018 6 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

The required data structure

I Fast setup time and dynamic changeable
I Store weighted points in the plane
I Perform nearest-neighbor query
I Bulk updates (change weights of all nodes simultaneously)
I Insert point to data structure

Philipp Schepper June 12, 2018 7 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Additively weighted Voronoi Diagrams

q ∈ C(pi) :⇐⇒
∀j 6= i : d(q, pi) + wi ≤ d(q, pj) + wj

Find arg min1≤k<i (A[i , k] + d(vk , vi+1))
⇒ Find k s.t. vi+1 ∈ C(pk).

I Setup: O(n log n)

I Nearest neighbor search: O(log2 n)

I Bulk updates: O(log n)

I Insert point: O(log2 n)

Image from http:
//d.hatena.ne.jp/kaiseh/
20091010/1255198573 .

Philipp Schepper June 12, 2018 8 / 19

http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Additively weighted Voronoi Diagrams

q ∈ C(pi) :⇐⇒
∀j 6= i : d(q, pi) + wi ≤ d(q, pj) + wj

Find arg min1≤k<i (A[i , k] + d(vk , vi+1))
⇒ Find k s.t. vi+1 ∈ C(pk).

I Setup: O(n log n)

I Nearest neighbor search: O(log2 n)

I Bulk updates: O(log n)

I Insert point: O(log2 n)
Image from http:

//d.hatena.ne.jp/kaiseh/
20091010/1255198573 .

Philipp Schepper June 12, 2018 8 / 19

http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573
http://d.hatena.ne.jp/kaiseh/20091010/1255198573

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. A[2, 1] := d(v1, v2)

2. For i = 2, . . . , n − 1:
3. For j = 1, . . . , i − 1:
4. A[i + 1, j] := A[i , j] + d(vi , vi+1)

5. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP
Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. A[2, 1] := d(v1, v2)

2. Set up the data structure
3. For i = 2, . . . , n − 1:
4. For j = 1, . . . , i − 1:
5. A[i + 1, j] := A[i , j] + d(vi , vi+1)

6. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

7. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP
Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. A[2, 1] := d(v1, v2)

2. Set up the data structure
3. For i = 2, . . . , n − 1:
4. For j = 1, . . . , i − 1:
5. A[i + 1, j] := A[i , j] + d(vi , vi+1)

6. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

7. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3. For j = 1, . . . , i − 1:
4. A[i + 1, j] := A[i , j] + d(vi , vi+1)

5. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3. For j = 1, . . . , i − 1:
4. A[i + 1, j] := A[i , j] + d(vi , vi+1)

5. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3.
4. Do a bulk update with weight d(vi , vi+1)

5. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3.
4. Do a bulk update with weight d(vi , vi+1)

5. A[i + 1, i] = min1≤k<i (A[i , k] + d(vk , vi+1))

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3.
4. Do a bulk update with weight d(vi , vi+1)

5. Perform a nearest-neighbor query for vi+1

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3.
4. Do a bulk update with weight d(vi , vi+1)

5. Perform a nearest-neighbor query for vi+1

6. Return min1≤k<n(A[n, k] + d(vk , vn))

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Faster bitonic TSP

Theorem 1
Bitonic TSP in the plane with n nodes can be solved in O(n log2 n)
time.

1. Set up the data structure
2. For i = 2, . . . , n − 1:
3.
4. Do a bulk update with weight d(vi , vi+1)

5. Perform a nearest-neighbor query for vi+1

6. Perform a nearest-neighbor query for vn

Philipp Schepper June 12, 2018 9 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

k-OPT

TSP is NP-hard ⇒ Unlikely to have a fast algorithm for exact solution

Different approach:
Start with “good” solution and change it locally.

Usually:
I One start with solution found by some heuristic
I Improve solution in several rounds

Philipp Schepper June 12, 2018 10 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

k-OPT

TSP is NP-hard ⇒ Unlikely to have a fast algorithm for exact solution

Different approach:
Start with “good” solution and change it locally.

Usually:
I One start with solution found by some heuristic
I Improve solution in several rounds

Philipp Schepper June 12, 2018 10 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

The k-Opt Problems

Definition: (Proper) k-move

Replacement of k edges in a tour by k (different) edges such that the
new tour is valid.

Definition: k-Opt

Input: A complete undirected graph G along with a (symmetric)
distance function d : E (G)→ N, k ∈ N, and a tour T ⊆ E (G).
Question: Is there a k-move that strictly improves the cost of T?

In k-Opt Optimization we ask for a k-move with largest cost
improvement.

Philipp Schepper June 12, 2018 11 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

A first algorithm
Theorem
k-Opt Optimization can be solved in O(nk) time for fixed k .

Proof
Label the vertices s.t. the tour is v1, . . . , vn, v1

1. For i1 = 1, . . . , n − k + 1:
2. For i2 = i1 + 1, . . . , n − k + 2:
3. . . .

4. For ik = ik−1 + 1, . . . , n:
5. Remove edges {vij , vij+1} ∀j from T .
6. Check for each combination of points whether they form a
7. feasible tour and improve the cost.

Philipp Schepper June 12, 2018 12 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Assumption

Two removed/inserted edges do not share an endpoint!
Only to keep notation simpler.

Philipp Schepper June 12, 2018 13 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

A fast algorithm for k-Opt Optimization

Definition: Interfering edges

Two removed edges interfere with each other in a k-move if they are
connected by an inserted edge.

Lemma 3.2
For any signature π, we can find a subset Eπ ⊆ {e1, . . . , ek} of at
least dk/3e removed edges that are pairwise non-interfering.

Theorem 6
For every fixed k ≥ 3, the k-Opt Optimization problem on an n-vertex
graph can be solved in O(nb2k/3c+1) time.

Philipp Schepper June 12, 2018 14 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

A fast algorithm for k-Opt Optimization

Definition: Interfering edges

Two removed edges interfere with each other in a k-move if they are
connected by an inserted edge.

Lemma 3.2
For any signature π, we can find a subset Eπ ⊆ {e1, . . . , ek} of at
least dk/3e removed edges that are pairwise non-interfering.

Theorem 6
For every fixed k ≥ 3, the k-Opt Optimization problem on an n-vertex
graph can be solved in O(nb2k/3c+1) time.

Philipp Schepper June 12, 2018 14 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

A fast algorithm for k-Opt Optimization

Definition: Interfering edges

Two removed edges interfere with each other in a k-move if they are
connected by an inserted edge.

Lemma 3.2
For any signature π, we can find a subset Eπ ⊆ {e1, . . . , ek} of at
least dk/3e removed edges that are pairwise non-interfering.

Theorem 6
For every fixed k ≥ 3, the k-Opt Optimization problem on an n-vertex
graph can be solved in O(nb2k/3c+1) time.

Philipp Schepper June 12, 2018 14 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

A fast algorithm for k-Opt Optimization

Proof of Theorem 6
Graph G , k ∈ SetN

1. For all signatures π:
2. Compute Eπ and Ēπ = {a1, . . . , ak} \ Eπ
3. For all possible position of abstract edges ai ∈ Ēπ in G :
4. Insert the edges between these edges (update cost)
5. Find optimal embedding of edges ai ∈ Eπ into G

Corollary

3-Opt Optimization and 4-Opt Optimization can be solved in O(n3)
time.

Philipp Schepper June 12, 2018 15 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

A fast algorithm for k-Opt Optimization

Proof of Theorem 6
Graph G , k ∈ SetN

1. For all signatures π:
2. Compute Eπ and Ēπ = {a1, . . . , ak} \ Eπ
3. For all possible position of abstract edges ai ∈ Ēπ in G :
4. Insert the edges between these edges (update cost)
5. Find optimal embedding of edges ai ∈ Eπ into G

Corollary

3-Opt Optimization and 4-Opt Optimization can be solved in O(n3)
time.

Philipp Schepper June 12, 2018 15 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Lower Bounds

Lemma 3.1
Negative Triangle can be reduced to 3-Opt in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Corollary

The algorithms for 3-Opt Optimization and 4-Opt Optimization are
optimal (assuming the APSP conjecture).

Philipp Schepper June 12, 2018 16 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Lower Bounds

Lemma 3.1
Negative Triangle can be reduced to 3-Opt in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Corollary

The algorithms for 3-Opt Optimization and 4-Opt Optimization are
optimal (assuming the APSP conjecture).

Philipp Schepper June 12, 2018 16 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Proof of Lemma 3.1

I (G ,w) Negative Triangle instance with symmetric w
I Define 3-Opt instance with initial tour T = a1, b1, . . . , an, bn, a1:

I M := maxi,j∈[n] |w(vi , vj)|
I d(ai , bi) = 0 ∀1 ≤ i ≤ n
I d(bn, a1) = d(bi , ai+1) = −3M ∀1 ≤ i < n
I d(ai , bj) = w(vi , vj) ∀1 ≤ i < j ≤ n − 1
I d(bi , aj) = w(vi , vj) ∀1 ≤ i < j − 1 ≤ n − 1
I d(ai , aj) = d(bi , bj) = 3M ∀i 6= j

Reduction requires O(n2) time.

Philipp Schepper June 12, 2018 17 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Further results

Lemma C.1
3-Opt can be reduced to Negative Triangle in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Theorem 5
There is a truly subcubic algorithm for 3-Opt if and only if there is
such an algorithm for APSP on weighted digraphs.

⇒ APSP equivalence for 3-Opt.

Philipp Schepper June 12, 2018 18 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Further results

Lemma C.1
3-Opt can be reduced to Negative Triangle in time O(n2) while
increasing the size of the graph and the largest weight by a constant
factor.

Theorem 5
There is a truly subcubic algorithm for 3-Opt if and only if there is
such an algorithm for APSP on weighted digraphs.

⇒ APSP equivalence for 3-Opt.

Philipp Schepper June 12, 2018 18 / 19

Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results

Further results

Theorem 4
Bottleneck pyramidal (≈ bitonic) TSP with n ordered points in the
plane can be solved in O(n log3 n) time.

Theorem 7
Repeated 2-Opt Optimization can be solved in O(n log n) per iteration
after O(n2) preprocessing.

Theorem 8
For any fixed ε > 0, 2-Opt in the plane can be solved in O(n8/5+ε)
time, and 3-Optin the plane can be solved in O(n80/31+ε) expected
time.

Philipp Schepper June 12, 2018 19 / 19

	Introduction
	Bitonic TSP
	Faster k-OPT
	Lower Bounds
	Further results

