Fine-Grained Complexity Analysis of Two Classic TSP Variants Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard Woeginger 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) Philipp Schepper June 12, 2018 2 / 19 Further results # Outline Introduction •0 Introduction Bitonic TSP Faster k-OPT Lower Bounds Further results Philipp Schepper June 12, 2018 0 ► Traveling Salesman Problem (TSP) is NP-hard ⇒ Unlikely to have fast algorithms Philipp Schepper June 12, 2018 3 / 19 ## Motivation - ► Traveling Salesman Problem (TSP) is NP-hard ⇒ Unlikely to have fast algorithms - ► Solve relaxations instead or proof their hardness Philipp Schepper June 12, 2018 3 / 19 ### Bitonic TSP Introduction ### Definition: Bitonic TSP **Input:** *n* nodes in the plane (with distinct *x*-coordinates) Output: A shortest hamiltonian cycle consisting of two monotone path with respect to their left-right order. Philipp Schepper June 12, 2018 4 / 19 4 / 19 Introduction Philipp Schepper June 12, 2018 ### Bitonic TSP Introduction ### Definition: Bitonic TSP **Input:** *n* nodes in the plane (with distinct *x*-coordinates) **Output:** A shortest hamiltonian cycle consisting of two monotone path with respect to their left-right order. #### Theorem Bitonic TSP can be solved in $\mathcal{O}(n^2)$ time. Since 1991 finding this algorithm is an exercise for students! Philipp Schepper June 12, 2018 4 / 19 - Assume nodes are ordered s.t. the left-most node is v_1 and the right-most node is v_n - $A \in \mathbb{R}^{n \times n}$ Introduction - ▶ $A[i,j] := \text{sum of the lengths of the } two \text{ shortest disjoint bitonic tours both starting at } v_1, \text{ ending at } i \text{ and } j < i, \text{ and covering all points } \{v_1, \ldots, v_i\}.$ - 1. $A[2,1] := d(v_1, v_2)$ - 2. For i = 2, ..., n-1: - 3. For $j = 1, \dots, i 1$: - 4. $A[i+1,j] := A[i,j] + d(v_i,v_{i+1})$ - 5. $A[i+1,i] = \min_{1 \le k \le i} (A[i,k] + d(v_k, v_{i+1}))$ - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ - ▶ New values depend only on results from previous step - ▶ Most values are changed equally $(+d(v_i, v_{i+1}))$ - Search for minimum - ▶ One new entry in table, i.e. A[i+1, i] Introduction - ▶ New values depend only on results from previous step - ▶ Most values are changed equally $(+d(v_i, v_{i+1}))$ - ► Search for minimum - ▶ One new entry in table, i.e. A[i+1, i] - ⇒ Speed up each operation! Introduction - ▶ New values depend only on results from previous step - ▶ Most values are changed equally $(+d(v_i, v_{i+1}))$ - Search for minimum - ▶ One new entry in table, i.e. A[i+1, i] - ⇒ Speed up each operation! - ▶ Store only current values (\rightsquigarrow fix i) - ▶ Treat values as points with associated weight A[i, k] - ▶ Perform bulk updates on weights $(+d(v_i, v_{i+1}))$ - ► Nearest-neighbor query - ► Insert one new value # The required data structure Introduction - ► Fast setup time and dynamic changeable - ► Store weighted points in the plane - ► Perform nearest-neighbor query - ► Bulk updates (change weights of all nodes simultaneously) - ▶ Insert point to data structure Philipp Schepper June 12, 2018 7 / 19 $$q \in C(p_i)$$: \iff $\forall j \neq i : d(q, p_i) + w_i \leq d(q, p_i) + w_i$ Find arg min_{1 $\leq k \leq i$} ($A[i, k] + d(v_k, v_{i+1})$) \Rightarrow Find k s.t. $v_{i+1} \in \mathcal{C}(p_k)$. Image from http: //d.hatena.ne.jp/kaiseh/ 20091010/1255198573. Introduction # Additively weighted Voronoi Diagrams $$q \in C(p_i) : \iff \forall j \neq i : d(q, p_i) + w_i \leq d(q, p_i) + w_i$$ Find $\arg \min_{1 \le k < i} (A[i, k] + d(v_k, v_{i+1}))$ \Rightarrow Find k s.t. $v_{i+1} \in C(p_k)$. - ▶ Setup: $\mathcal{O}(n \log n)$ - ▶ Nearest neighbor search: $\mathcal{O}(\log^2 n)$ - ▶ Bulk updates: $\mathcal{O}(\log n)$ - ▶ Insert point: $\mathcal{O}(\log^2 n)$ Image from http: //d.hatena.ne.jp/kaiseh/ 20091010/1255198573. # Faster bitonic TSP #### Theorem 1 Bitonic TSP in the plane with n nodes can be solved in $O(n \log^2 n)$ time. Philipp Schepper June 12, 2018 9 / 19 Introduction Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. $A[2,1] := d(v_1, v_2)$ - 2. Set up the data structure - 3. For i = 2, ..., n-1: - 4. For j = 1, ..., i 1: - 5. $A[i+1,j] := A[i,j] + d(v_i,v_{i+1})$ - 6. $A[i+1,i] = \min_{1 \le k \le i} (A[i,k] + d(v_k, v_{i+1}))$ - 7. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. $A[2,1] := d(v_1, v_2)$ - 2. Set up the data structure - 3. For i = 2, ..., n-1: - 4. For $j = 1, \ldots, i 1$: - 5. $A[i+1,j] := A[i,j] + d(v_i, v_{i+1})$ - 6. $A[i+1,i] = \min_{1 \le k < i} (A[i,k] + d(v_k, v_{i+1}))$ - 7. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Lower Bounds ## Faster bitonic TSP #### Theorem 1 Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. For j = 1, ..., i 1: - 4. $A[i+1,j] := A[i,j] + d(v_i,v_{i+1})$ - 5. $A[i+1,i] = \min_{1 \le k \le i} (A[i,k] + d(v_k, v_{i+1}))$ - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Introduction Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. For j = 1, ..., i 1: - 4. $A[i+1,j] := A[i,j] + d(v_i, v_{i+1})$ - 5. $A[i+1,i] = \min_{1 \le k \le i} (A[i,k] + d(v_k, v_{i+1}))$ - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Philipp Schepper June 12, 2018 Introduction Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. - 4. Do a bulk update with weight $d(v_i, v_{i+1})$ - 5. $A[i+1,i] = \min_{1 \le k \le i} (A[i,k] + d(v_k, v_{i+1}))$ - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Introduction Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. - 4. Do a bulk update with weight $d(v_i, v_{i+1})$ - 5. $A[i+1, i] = \min_{1 \le k \le i} (A[i, k] + d(v_k, v_{i+1}))$ - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Philipp Schepper June 12, 2018 # Faster bitonic TSP #### Theorem 1 Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. - 4. Do a bulk update with weight $d(v_i, v_{i+1})$ - 5. Perform a nearest-neighbor query for v_{i+1} - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ ### Faster bitonic TSP #### Theorem 1 Introduction Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. - 4. Do a bulk update with weight $d(v_i, v_{i+1})$ - 5. Perform a nearest-neighbor query for v_{i+1} - 6. Return $\min_{1 \le k \le n} (A[n, k] + d(v_k, v_n))$ Lower Bounds # Faster bitonic TSP #### Theorem 1 Bitonic TSP in the plane with n nodes can be solved in $\mathcal{O}(n \log^2 n)$ time. - 1. Set up the data structure - 2. For i = 2, ..., n-1: - 3. - 4. Do a bulk update with weight $d(v_i, v_{i+1})$ - 5. Perform a nearest-neighbor query for v_{i+1} - 6. Perform a nearest-neighbor query for v_n k-OPT Introduction TSP is NP-hard \Rightarrow Unlikely to have a fast algorithm for exact solution Philipp Schepper June 12, 2018 10 / 19 ### k-OPT Introduction TSP is NP-hard ⇒ Unlikely to have a fast algorithm for exact solution ### Different approach: Start with "good" solution and change it locally. #### **Usually:** - ▶ One start with solution found by some heuristic - ► Improve solution in several rounds Philipp Schepper June 12, 2018 10 / 19 # The k-Opt Problems Introduction ## Definition: (Proper) k-move Replacement of k edges in a tour by k (different) edges such that the new tour is valid. ### Definition: k-Opt **Input:** A complete undirected graph G along with a (symmetric) distance function $d: E(G) \to \mathbb{N}$, $k \in \mathbb{N}$, and a tour $T \subseteq E(G)$. **Question:** Is there a k-move that strictly improves the cost of T? In k-Opt Optimization we ask for a k-move with largest cost improvement. Philipp Schepper June 12, 2018 11 / 19 # A first algorithm #### Theorem k-Opt Optimization can be solved in $\mathcal{O}(n^k)$ time for fixed k. ### Proof Introduction Label the vertices s.t. the tour is v_1, \ldots, v_n, v_1 - 1. For $i_1 = 1, \ldots, n k + 1$: - For $i_2 = i_1 + 1, \dots, n k + 2$: - 3. - 4. For $i_k = i_{k-1} + 1, \dots, n$: - 5. Remove edges $\{v_{i_i}, v_{i_i+1}\} \ \forall j$ from T. - 6. Check for each combination of points whether they form a - 7. feasible tour and improve the cost. # Assumption Introduction Two removed/inserted edges do not share an endpoint! Only to keep notation simpler. Philipp Schepper June 12, 2018 13 / 19 14 / 19 # A fast algorithm for k-Opt Optimization ## Definition: Interfering edges Introduction Two removed edges *interfere* with each other in a k-move if they are connected by an inserted edge. Philipp Schepper June 12, 2018 14 / 19 # A fast algorithm for k-Opt Optimization ## Definition: Interfering edges Two removed edges *interfere* with each other in a k-move if they are connected by an inserted edge. ### Lemma 3.2 For any signature π , we can find a subset $E_{\pi} \subseteq \{e_1, \dots, e_k\}$ of at least $\lceil k/3 \rceil$ removed edges that are pairwise non-interfering. Philipp Schepper June 12, 2018 # A fast algorithm for k-Opt Optimization ## Definition: Interfering edges Two removed edges *interfere* with each other in a k-move if they are connected by an inserted edge. ### Lemma 3.2 Introduction For any signature π , we can find a subset $E_{\pi} \subseteq \{e_1, \ldots, e_k\}$ of at least $\lceil k/3 \rceil$ removed edges that are pairwise non-interfering. ### Theorem 6 For every fixed $k \ge 3$, the k-Opt Optimization problem on an n-vertex graph can be solved in $\mathcal{O}(n^{\lfloor 2k/3 \rfloor + 1})$ time. Philipp Schepper June 12, 2018 14 / 19 # A fast algorithm for k-Opt Optimization ### Proof of Theorem 6 ### Graph $G, k \in SetN$ Introduction - 1. For all signatures π : - 2. Compute E_{π} and $\bar{E}_{\pi} = \{a_1, \ldots, a_k\} \setminus E_{\pi}$ - 3. For all possible position of abstract edges $a_i \in \bar{E}_{\pi}$ in G: - 4. Insert the edges between these edges (→ update cost) - 5. Find optimal embedding of edges $a_i \in E_{\pi}$ into G 15 / 19 # A fast algorithm for k-Opt Optimization ### Proof of Theorem 6 Graph $G, k \in SetN$ - 1. For all signatures π : - Compute E_{π} and $\bar{E}_{\pi} = \{a_1, \ldots, a_k\} \setminus E_{\pi}$ - For all possible position of abstract edges $a_i \in \bar{E}_{\pi}$ in G: 3. - Insert the edges between these edges (>>> update cost) 4. - 5. Find optimal embedding of edges $a_i \in E_{\pi}$ into G ## Corollary 3-Opt Optimization and 4-Opt Optimization can be solved in $\mathcal{O}(n^3)$ time. Philipp Schepper June 12, 2018 16 / 19 Lower Bounds ### Lower Bounds ## Lemma 3.1 Negative Triangle can be reduced to 3-Opt in time $\mathcal{O}(n^2)$ while increasing the size of the graph and the largest weight by a constant factor. Philipp Schepper June 12, 2018 Further results 16 / 19 # Lower Bounds Introduction ## Lemma 3.1 Negative Triangle can be reduced to 3-Opt in time $\mathcal{O}(n^2)$ while increasing the size of the graph and the largest weight by a constant factor. ## Corollary The algorithms for 3-Opt Optimization and 4-Opt Optimization are optimal (assuming the APSP conjecture). Philipp Schepper June 12, 2018 ### Proof of Lemma 3.1 Introduction - \triangleright (G, w) Negative Triangle instance with symmetric w - ▶ Define 3-Opt instance with initial tour $T = a_1, b_1, \ldots, a_n, b_n, a_1$: - $ightharpoonup M := \max_{i,j \in [n]} |w(v_i, v_j)|$ - \blacktriangleright $d(a_i, b_i) = 0 \quad \forall 1 < i < n$ - ▶ $d(b_n, a_1) = d(b_i, a_{i+1}) = -3M$ $\forall 1 < i < n$ - \blacktriangleright $d(a_i, b_i) = w(v_i, v_i) \quad \forall 1 \leq i < j \leq n-1$ - ▶ $d(b_i, a_i) = w(v_i, v_i)$ $\forall 1 < i < j 1 < n 1$ - \blacktriangleright $d(a_i, a_i) = d(b_i, b_i) = 3M \quad \forall i \neq i$ Reduction requires $\mathcal{O}(n^2)$ time. Further results ### Further results Bitonic TSP Introduction ## Lemma C.1 3-Opt can be reduced to Negative Triangle in time $\mathcal{O}(n^2)$ while increasing the size of the graph and the largest weight by a constant factor. Philipp Schepper June 12, 2018 18 / 19 #### Further results Introduction ## Lemma C.1 3-Opt can be reduced to Negative Triangle in time $\mathcal{O}(n^2)$ while increasing the size of the graph and the largest weight by a constant factor. ### Theorem 5 There is a truly subcubic algorithm for 3-Opt if and only if there is such an algorithm for APSP on weighted digraphs. \Rightarrow APSP equivalence for 3-Opt. Philipp Schepper June 12, 2018 18 / 19 19 / 19 ### Further results Introduction ## Theorem 4 Bottleneck pyramidal (\approx bitonic) TSP with n ordered points in the plane can be solved in $\mathcal{O}(n \log^3 n)$ time. #### Theorem 7 Repeated 2-Opt Optimization can be solved in $\mathcal{O}(n \log n)$ per iteration after $\mathcal{O}(n^2)$ preprocessing. #### Theorem 8 For any fixed $\varepsilon > 0$, 2-Opt in the plane can be solved in $\mathcal{O}(n^{8/5+\varepsilon})$ time, and 3-Optin the plane can be solved in $\mathcal{O}(n^{80/31+\varepsilon})$ expected time. Philipp Schepper June 12, 2018