

Hitting Meets Packing: How Hard Can It Be?

Jacob Focke¹ Fabian Frei¹ Shaohua Li¹ Dániel Marx¹ **Philipp Schepper¹** Roohani Sharma² Karol Węgrzycki^{3,4}

¹ CISPA | ² University of Bergen

³ MPI Informatics, SIC | ⁴ Saarland University

ESA 2024 - September 2, 2024

Triangle Partition

Vertex Cover

Minimum s-t-cut

Maximum Matching

Feedback Vertex Set

Cycle Cover

Odd Cycle Transversal

Partition the graph into triangles

Triangle Partition

Select vertices to cover all edges **Vertex Cover**

Minimum s-t-cut

Separate two vertices by the optimal vertex removals

Select the maximum number of disjoint edges Maximum Matching

Feedback Vertex Set t

Remove vertices to make the graph a forest

Cycle Cover

Cover (all) vertices using only cycles

Odd Cycle Transversal

Delete vertices to make the graph bipartite

Partition the graph into triangles

Triangle Partition

Select vertices to cover all edges **Vertex Cover**

Odd Cycle Packing

Minimum s-t-cut
Chordal Deletion

Separate two vertices by the optimal vertex removals

Select the maximum number of disjoint edges Maximum Matching

Feedback Vertex Set Remove vertices to make the graph a forest

Tree Cover

H-Hitting

Clique Covering Number

Cycle Cover

Cover (all) vertices using only cycles

Odd Cycle Transversal

Delete vertices to make the graph bipartite

A Set of Unrelated Problems

Vertex Cover

Minimum s-t-cut **Chordal Deletion**

Feedback Vertex Set

H-Hitting

Odd Cycle Transversal

Packing Problems

A Set of Unrelated Problems

Input: A graph G, an integer ℓ .

Task: Pack ℓ copies of H in a vertex-disjoint way in G.

Input: A graph G, an integer ℓ .

Task: Pack ℓ copies of H in a vertex-disjoint way in G.

■ Maximum Matching: $H = K_2 \leadsto$ "Edge Packing"

Input: A graph G, an integer ℓ .

Task: Pack ℓ copies of H in a vertex-disjoint way in G.

- Maximum Matching: H = K₂ \sim "Edge Packing"
- Triangle Covering: $H = C_3 \rightsquigarrow$ "Triangle Packing"

Input: A graph G, an integer ℓ .

Task: Pack ℓ copies of H in a vertex-disjoint way in G.

- Maximum Matching: H = K₂ \sim "Edge Packing"
- Triangle Covering: $H = C_3 \leadsto$ "Triangle Packing"
- H-PACKING where $H = \begin{bmatrix} \bullet & \bullet & \bullet \\ H & \bullet & \bullet \end{bmatrix}$

Input: A graph G, an integer k.

Input: A graph G, an integer k.

Task: Delete k vertices such that no copy of H remains in G.

■ Triangle Hitting: $H = C_3 = a$ triangle

Input: A graph G, an integer k.

- Triangle Hitting:
 - $H = C_3 = a triangle$
- Vertex Cover:

$$H = K_2 \rightsquigarrow$$
 "Edge Hitting"

Deleted Vertices = Vertex Cover!

Hitting Problems

H-HITTING for a fixed graph H

Input: A graph G, an integer k.

- Triangle Hitting: $H = C_3 = \text{a triangle}$
- Vertex Cover: $H = K_2 \leadsto$ "Edge Hitting"
- H-HITTING where $H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Input: A graph G, an integer k.

- Triangle Hitting: $H = C_3 = \text{a triangle}$
- Vertex Cover: $H = K_2 \leadsto$ "Edge Hitting"
- H-HITTING where $H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

also known as covering or transversal

Hitting Meets Packing

Duality Results:

If we destroy all copies of H by deleting k vertices, then we can pack at most k copies of H.

Erdős-Pósa property:

If we can pack ℓ cycles, then we can hit all cycles by removing $k = \mathcal{O}(\ell \log \ell)$ vertices.

H-HITPACK:

A generalization of Hitting and Packing that makes both problems "more robust" (---- notion of stability).

Input: A graph G, integers k and ℓ .

Task:

Input: A graph G, integers k and ℓ .

Task:

H-PACKING

$$(k = 0, \ell = 4)$$

Input: A graph G, integers k and ℓ .

Task:

H-HITTING $(k = 7, \ell = 0)$

Input: A graph G, integers k and ℓ .

Task:

H-HITPACK $(k=3, \ell=2)$

Fix a connected graph H:

Theorem (Algorithmic Results)

H-НітРаск can be solved in time $2^{2^{\mathcal{O}(\mathsf{tw} \log \mathsf{tw})}} \cdot |G|^{\mathcal{O}(1)}$.

Fix a connected graph *H*:

Theorem (Algorithmic Results)

H-HITPACK can be solved in time $2^{2^{\mathcal{O}(\mathsf{tw} \log \mathsf{tw})}} \cdot |G|^{\mathcal{O}(1)}$.

Theorem (Hardness Results)

H-HITPACK is complete for $\Sigma_2^P = NP^{NP} = NP^{coNP}$.

No $2^{2^{o(tw)}} \cdot |G|^{\mathcal{O}(1)}$ -time algorithm unless ETH fails.

Fix a connected graph *H*:

Theorem (Algorithmic Results)

H-HITPACK can be solved in time $2^{2^{\mathcal{O}(\mathsf{tw} \log \mathsf{tw})}} \cdot |G|^{\mathcal{O}(1)}$.

Theorem (Hardness Results)

H-НітРаск is complete for $\Sigma_2^P = NP^{NP} = NP^{coNP}$.

No $2^{2^{o(tw)}} \cdot |G|^{\mathcal{O}(1)}$ -time algorithm unless ETH fails.

Summary: The problem is *double*-exponential in treewidth!

Although the base problems are much simpler.

Input: A graph G, integers k and ℓ .

Task:

Delete k vertices such that we cannot pack $\ell + 1$ copies of H.

8

Input: A graph G, integers k and ℓ .

Task:

Is there a set S of at most k vertices such that every H-packing in G-S contains at most ℓ copies of H.

8

Input: A graph G, integers k and ℓ .

Task:

Is there a set S of at most k vertices such that every H-packing in G-S contains at most ℓ copies of H.

Once we "guessed" the set *S*, we need to argue about *all possible H*-packings for the remaining graph!

8

The Source of Hardness

H-HITPACK for a fixed graph H

Input: A graph G, integers k and ℓ .

Task:

Is there a set S of at most k vertices such that every H-packing in G-S contains at most ℓ copies of H.

Once we "guessed" the set *S*, we need to argue about *all possible H*-packings for the remaining graph!

Hints at the Σ_2^P -hardness \blacktriangleleft

The Source of Hardness

H-HITPACK for a fixed graph H

Input: A graph G, integers k and ℓ .

Task:

Is there a set S of at most k vertices such that every H-packing in G-S contains at most ℓ copies of H.

Once we "guessed" the set *S*, we need to argue about *all possible H*-packings for the remaining graph!

Hints at the Σ_2^P -hardness \leftarrow

Main Question: How does this affect the algorithm?

Fix a bag of the decomposition (i.e., a separator):

Fix a bag of the decomposition (i.e., a separator):

Guess the deleted vertices.

- Guess the deleted vertices.
- **2** For each partial *H*-packing, store the size of the packing.

- Guess the deleted vertices.
- 2 For each partial *H*-packing, store the size of the packing.

- Guess the deleted vertices.
- 2 For each partial *H*-packing, store the size of the packing.

- Guess the deleted vertices.
- 2 For each partial *H*-packing, store the size of the packing.

- Guess the deleted vertices.
- 2 For each partial *H*-packing, store the size of the packing.
- If there is a packing with $> \ell$ copies of H, then discard the current guess.

- Guess the deleted vertices.
- 2 For each partial H-packing, store the size of the packing.
- If there is a packing with $> \ell$ copies of H, then discard the current guess.
- \rightarrow $|H|^{|G|}$ packings to consider!

■ Only the intersection with the bag matters!

- Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.

- Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.
 - \rightsquigarrow tw^{tw} · $|H|^{tw}$ possible types of packings

- Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.
 - \rightsquigarrow tw^{tw} · $|H|^{tw}$ possible types of packings

- 1 Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.
 - \rightsquigarrow tw^{tw} · $|H|^{tw}$ possible types of packings
- 2 For each type, the packing can have size $\in \{0, 1, 2, \dots, \ell\}$ (if it is larger, we removed the "wrong" vertices)

- Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.
 - \rightarrow tw^{tw} · $|H|^{tw}$ possible types of packings
- 2 For each type, the packing can have size $\{0, 1, 2, \dots, \ell\}$ (if it is larger, we removed the "wrong" vertices)
- \sim $\ell^{\text{tw}^{\mathcal{O}(\text{tw})}}$ states for each bag

- Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.
 - \rightarrow tw^{tw} · $|H|^{tw}$ possible types of packings
- 2 For each type, the packing can have size $\in \{0, 1, 2, \dots, \ell\}$ (if it is larger, we removed the "wrong" vertices)
- \sim $\ell^{\text{tw}^{\mathcal{O}(\text{tw})}}$ states for each bag
- 3 Discard very small packings
- \rightarrow only $\mathcal{O}(\mathsf{tw} \cdot |H|)^{\mathsf{tw}^{\mathcal{O}(\mathsf{tw})}}$ states for each bag

- Only the intersection with the bag matters!
 - \rightarrow Need a partition of the bag and mappings from there to H.
 - \rightarrow tw^{tw} · $|H|^{tw}$ possible types of packings
- 2 For each type, the packing can have size $\{0, 1, 2, \dots, \ell\}$ (if it is larger, we removed the "wrong" vertices)
- \sim $\ell^{\text{tw}^{\mathcal{O}(\text{tw})}}$ states for each bag
- 3 Discard very small packings
- \rightarrow only $\mathcal{O}(\mathsf{tw} \cdot |H|)^{\mathsf{tw}^{\mathcal{O}(\mathsf{tw})}}$ states for each bag

Theorem

For every connected graph H, H-HITPACK can be solved in time $2^{2^{\mathcal{O}(\mathsf{tw}\log\mathsf{tw})}}$

Graph H	Upper Bound	Lower Bound under ETH	Completeness
Connected	2 ^{2O(tw log tw)}	no 2 ^{2°(tw)}	$\Sigma_2^{P} = NP^{NP}$

Graph <i>H</i>	Upper Bound	Lower Bound under ETH	Completeness
Square		no 2 ^{2o(tw log tw)}	
Connected	2 ^{2^{O(tw log tw)}}	no 2 ^{2°(tw)}	$\Sigma_2^{P} = NP^{NP}$

Graph <i>H</i>	Upper Bound	Lower Bound under ETH	Completeness
Square		no 2 ^{2o(tw log tw)}	
Connected	$2^{2^{\mathcal{O}(twlogtw)}}$	no 2 ^{2o(tw)}	$\Sigma_2^{P} = NP^{NP}$
<i>q</i> -Clique	2 ^{2O(tw)}		

Graph <i>H</i>	Upper Bound	Lower Bound under ETH	Completeness
Square		no 2 ^{2o(tw log tw)}	
Connected ≥ 3 vtcs.	22 ^{O(tw log tw)}	no 2 ^{2°(tw)}	$\Sigma_2^{P} = NP^{NP}$
q-Clique	2 ^{2^{O(tw)}}		
Edge			

Graph <i>H</i>	Upper Bound	Lower Bound under ETH	Completeness
Square		no 2 ^{2o(tw log tw)}	
Connected \geq 3 vtcs.	$2^{2^{\mathcal{O}(twlogtw)}}$	no 2 ^{2°(tw)}	$\Sigma_2^{P} = NP^{NP}$
<i>q</i> -Clique	2 ^{2^{O(tw)}}		
Edge	2 ^{poly(tw)}	no 2 ^{o(tw) †}	NP †

[†] Previously known

Graph <i>H</i>	Upper Bound	Lower Bound under ETH	Completeness
Square		no 2 ^{2o(tw log tw)}	
Connected \geq 3 vtcs.	22 ^{O(tw log tw)}	no 2 ^{2°(tw)}	$\Sigma_2^{P} = NP^{NP}$
<i>q</i> -Clique	2 ^{2^{O(tw)}}		
Edge	2 ^{poly(tw)}	no 2 ^{o(tw) †}	NP †

No changes in the treewidth-DP needed!

[†] Previously known

The Special Case of EDGE-HITPACK

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: "top-down approach" for the computation

→ DP considers all theoretically possible states

The Special Case of EDGE-HITPACK

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: "top-down approach" for the computation

→ DP considers all theoretically possible states

Our DP: "bottom-up approach"

→ DP considers only those states that actually exist

The Special Case of EDGE-HITPACK

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: "top-down approach" for the computation

→ DP considers all theoretically possible states

Our DP: "bottom-up approach"

→ DP considers only those states that actually exist

We give a *non-constructive* proof using (delta-)matroids to bound the number of states.

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: "top-down approach" for the computation

→ DP considers all theoretically possible states

Our DP: "bottom-up approach"

→ DP considers only those states that actually exist

We give a *non-constructive* proof using (delta-)matroids to bound the number of states.

--- Significantly faster algorithm without any changes!

Generalizing H-HITPACK Further

Instead of a fixed graph \emph{H} , we allow arbitrary graph objects \emph{X}

Generalizing *H*-НітРАСК Further

Instead of a fixed graph H, we allow arbitrary graph objects \mathcal{X}

 $\mathcal{X} =$ "class of all cycles":

generalizes Feedback Vertex Set and Cycle Packing

Generalizing H-HITPACK Further

Instead of a fixed graph H, we allow arbitrary graph objects $\mathcal X$

 $\mathcal{X} =$ "class of all cycles":

generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

 \blacksquare Assume we deleted k vertices

Generalizing H-HITPACK Further

Instead of a fixed graph H, we allow arbitrary graph objects \mathcal{X}

 $\mathcal{X} =$ "class of all cycles":

generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

- \blacksquare Assume we deleted k vertices
- Erdős–Pósa: Can destroy ℓ cycles by deleting $\mathcal{O}(\ell \log \ell)$ vertices

Instead of a fixed graph H, we allow arbitrary graph objects $\mathcal X$

 $\mathcal{X} =$ "class of all cycles":

generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

- \blacksquare Assume we deleted k vertices
- Erdős–Pósa: Can destroy ℓ cycles by deleting $\mathcal{O}(\ell \log \ell)$ vertices
- \rightsquigarrow Treewidth is $\mathcal{O}(k + \ell \log \ell)$
- \rightarrow Algorithm with running time $2^{2^{(k+\ell)\operatorname{poly}\log(k+\ell)}}$

Instead of a fixed graph H, we allow arbitrary graph objects $\mathcal X$

 $\mathcal{X}=$ "class of all cycles":

generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

- \blacksquare Assume we deleted k vertices
- Erdős–Pósa: Can destroy ℓ cycles by deleting $\mathcal{O}(\ell \log \ell)$ vertices
- \rightsquigarrow Treewidth is $\mathcal{O}(k + \ell \log \ell)$
- \rightarrow Algorithm with running time $2^{2^{(k+\ell)\operatorname{poly}\log(k+\ell)}}$

Theorem

CYCLE-HITPACK can be solved in time $2^{\text{poly}(k+\ell)}$.

Graph <i>H</i>	Upper Bounds		LB under ETH	Completeness
Square			no 2 ^{2°(tw log tw)}	
Conn 3+ vtx	$2^{\mathcal{O}((k+\ell)\log(k+\ell))}$	$2^{2^{\mathcal{O}(tw\logtw)}}$	no 2 ^{2°(tw)}	$\Sigma_2^{P} = NP^{NP}$
<i>q</i> -Clique		2 ^{2^{O(tw)}}		
Edge	$3^{k+\ell}$	2 ^{poly(tw)}	no 2º(tw)	NP
Class of all cycles	$2^{\operatorname{poly}(k+\ell)}$	2 ^{2^{O(tw log tw)}}	no 2 ^{2°(tw log tw)}	Σ_2^{P}

Conclusion

 \mathcal{X} -HITPACK generalizes \mathcal{X} -HITTING and \mathcal{X} -PACKING

- Significantly harder than base problems
- New algorithmic ideas are needed
- Some cases still allow for faster algorithms

Conclusion

\mathcal{X} -HITPACK generalizes \mathcal{X} -HITTING and \mathcal{X} -PACKING

- Significantly harder than base problems
- New algorithmic ideas are needed
- Some cases still allow for faster algorithms

Open questions:

- What about induced subgraphs or directed versions?
- Approximation results by relaxing the condition on k and ℓ ?
- Is there a non-trivial relation to Erdős–Pósa for other graph classes?

\mathcal{X} -HITPACK generalizes \mathcal{X} -HITTING and \mathcal{X} -PACKING

- Significantly harder than base problems
- New algorithmic ideas are needed
- Some cases still allow for faster algorithms

Open questions:

- What about induced subgraphs or directed versions?
- Approximation results by relaxing the condition on k and ℓ ?
- Is there a non-trivial relation to Erdős–Pósa for other graph classes?

Take away: Design the DPs to not waste time on impossible states.

Full version: arXiv:2402.14927

Appendix

How does a typical treewidth-DP work?

How does a typical treewidth-DP work?

■ Identify the states of a vertex in a (partial) solution; usually a constant number of states, say *c*.

1

How does a typical treewidth-DP work?

- Identify the states of a vertex in a (partial) solution; usually a constant number of states, say *c*.
- At each node of the tree decomposition:Adjust the states based on the changes in the graph.

How does a typical treewidth-DP work?

- Identify the states of a vertex in a (partial) solution; usually a constant number of states, say *c*.
- At each node of the tree decomposition: Adjust the states based on the changes in the graph.
- \rightarrow Running time of $c^{\text{tw}^2} \cdot n^{\mathcal{O}(1)}$ (better convolution techniques frequently give $c^{\text{tw}} \cdot n^{\mathcal{O}(1)}$).

How does a typical treewidth-DP work?

- Identify the states of a vertex in a (partial) solution; usually a constant number of states, say *c*.
- At each node of the tree decomposition: Adjust the states based on the changes in the graph.
- \rightarrow Running time of $c^{\text{tw}^2} \cdot n^{\mathcal{O}(1)}$ (better convolution techniques frequently give $c^{\text{tw}} \cdot n^{\mathcal{O}(1)}$).

For H-HITPACK the states are "deleted" and "not deleted", so c=2?! Then why is the problem double-exponential in treewidth?

Reduction from SAT to H-HITPACK

SAT

Input: CNF-formula φ

Task: Decide if φ can be satisfied.

Reduction from SAT to H-HITPACK

SAT

Input: CNF-formula φ

Task:

Does there exist an assignment to the variables such that for all clauses at least one literal is true.

Reduction from SAT to H-HITPACK

SAT

Input: CNF-formula φ

Task:

Does there exist an assignment to the variables such that for all clauses not all literals are false.

Reduction from SAT to H-HITPACK

SAT

Input: CNF-formula φ

Task:

Does there exist an assignment to the variables such that for all clauses not all literals are false.

SAT		H-HITPACK
Select a variable assignment	~ →	Delete vertices
Select every clause (for verification)	~→	Consider every packing
All literals are false	~→	Packing is too large

Create an instance with treewidth $\mathcal{O}(\log m)$.

