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Packing Problems

H-Packing for a fixed graph H

Input: A graph G, an integer ‘.

Task: Pack ‘ copies of H in a
vertex-disjoint way in G.

Maximum Matching:
H = K2  “Edge Packing”

Triangle Covering:
H = C3  “Triangle Packing”

H-Packing where
H =
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Hitting Problems

H-Hitting for a fixed graph H
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Hitting Problems

H-Hitting for a fixed graph H

Input: A graph G, an integer k .

Task: Delete k vertices such that
no copy of H remains in G.

Triangle Hitting:
H = C3 = a triangle

Vertex Cover:
H = K2  “Edge Hitting”

H-Hitting where
H =

also known as covering or transversal
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Hitting Meets Packing

Duality
results

Packing
problems

Hitting
problems

Duality Results:
If we destroy all copies of H by deleting k vertices,
then we can pack at most k copies of H.
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Hitting Meets Packing

Duality
results

Erdős–Pósa
property

Packing
problems

Hitting
problems

Erdős-Pósa property:
If we can pack ‘ cycles,
then we can hit all cycles by removing k = O(‘ log ‘) vertices.
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Hitting Meets Packing

H-HitPack
problem

Duality
results

Erdős–Pósa
property

Packing
problems

Hitting
problems

H-HitPack:
A generalization of Hitting and Packing
that makes both problems “more robust” ( notion of stability).
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H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =
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H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =

H-Hitting
(k = 7, ‘ = 0)
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H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =

H-HitPack
(k = 3, ‘ = 2)
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Our Contribution

Fix a connected graph H:

Theorem (Algorithmic Results)

H-HitPack can be solved in time 22
O(tw log tw) · |G|O(1).

Theorem (Hardness Results)

H-HitPack is complete for ΣP
2 = NPNP = NPcoNP.

No 22
o(tw) · |G|O(1)-time algorithm unless ETH fails.
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Our Contribution

Fix a connected graph H:

Theorem (Algorithmic Results)

H-HitPack can be solved in time 22
O(tw log tw) · |G|O(1).

Theorem (Hardness Results)

H-HitPack is complete for ΣP
2 = NPNP = NPcoNP.

No 22
o(tw) · |G|O(1)-time algorithm unless ETH fails.

Summary: The problem is double-exponential in treewidth!

Although the base problems are much simpler.

7



The Source of Hardness

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we cannot pack ‘+ 1 copies of H.

Once we “guessed” the set S, we need to argue
about all possible H-packings for the remaining graph!

Main Question: How does this affect the algorithm?
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Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!
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Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!

 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag
3 Discard very small packings
 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .
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Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Square no 22
o(tw log tw)

Connected ≥ 3 vtcs. 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

Edge 2poly(tw) no 2o(tw) † NP †

No changes in the treewidth-DP needed! † Previously known
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The Special Case of Edge-HitPack

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: “top-down approach” for the computation
 DP considers all theoretically possible states

Our DP: “bottom-up approach”
 DP considers only those states that actually exist

We give a non-constructive proof using (delta-)matroids to bound the
number of states.

 Significantly faster algorithm without any changes!
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Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Assume we deleted k vertices

Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices

 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).
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Our Contribution

Graph H Upper Bounds LB under ETH Completeness

Square no 22
o(tw log tw)

Conn 3+ vtx 2O((k+‘) log(k+‘)) 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

Edge 3k+‘ 2poly(tw) no 2o(tw) NP

Class of all
cycles

2poly(k+‘) 22
O(tw log tw) no 22

o(tw log tw)
ΣP
2
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Conclusion

X -HitPack generalizes X -Hitting and X -Packing

Significantly harder than base problems
New algorithmic ideas are needed
Some cases still allow for faster algorithms

Open questions:

What about induced subgraphs or directed versions?
Approximation results by relaxing the condition on k and ‘?
Is there a non-trivial relation to Erdős–Pósa for other graph classes?

Take away: Design the DPs to not waste time on impossible states.

Full version: arXiv:2402.14927
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Appendix



The Vanilla Treewidth-DP

How does a typical treewidth-DP work?

Identify the states of a vertex in a (partial) solution;
usually a constant number of states, say c .

At each node of the tree decomposition:
Adjust the states based on the changes in the graph.

 Running time of ctw2 · nO(1)

(better convolution techniques frequently give ctw · nO(1)).

For H-HitPack the states are “deleted” and “not deleted”, so c = 2?!

Then why is the problem double-exponential in treewidth?
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Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task: Decide if ’ can be satisfied.

SAT H-HitPack
Select a variable assignment  Delete vertices
Select every clause (for verification)  Consider every packing
All literals are false  Packing is too large

2



Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task:
Does there exist an assignment to the variables
such that for all clauses at least one literal is true.

SAT H-HitPack
Select a variable assignment  Delete vertices
Select every clause (for verification)  Consider every packing
All literals are false  Packing is too large
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Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task:
Does there exist an assignment to the variables
such that for all clauses not all literals are false.

SAT H-HitPack
Select a variable assignment  Delete vertices
Select every clause (for verification)  Consider every packing
All literals are false  Packing is too large
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Double-Exponential Lower Bound

Create an instance with treewidth O(logm).

x3 = false

“0”

“1”

x3 = truex2 = false x2 = truex1 = false x1 = true

Cx1;1;1 Cx2;1;3 Cx3;3;2

bit 1 bit 0

Cx3;2;3Cx2;2;2Cx1;2;1
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