
Hitting Meets Packing:
How Hard Can It Be?
Jacob Focke1 Fabian Frei1 Shaohua Li1 Dániel Marx1

Philipp Schepper1 Roohani Sharma2 Karol Węgrzycki3,4

1 CISPA | 2 University of Bergen
3 MPI Informatics, SIC | 4 Saarland University

ESA 2024 – September 2, 2024

A Set of Unrelated Problems

Triangle Partition

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

Packing Problems Hitting Problems

2

A Set of Unrelated Problems

Triangle Partition

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

Remove vertices to make
the graph a forest

Cover (all) vertices
using only cycles

Select vertices
to cover all edges

Select the maximum number
of disjoint edges

Partition the graph
into triangles

Delete vertices to make
the graph bipartite

Separate two vertices by the
optimal vertex removals

Packing Problems Hitting Problems

2

A Set of Unrelated Problems

Clique Covering Number

Triangle Partition

Odd Cycle Packing

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

H-Hitting

Chordal Deletion

Tree Cover
Remove vertices to make
the graph a forest

Cover (all) vertices
using only cycles

Select vertices
to cover all edges

Select the maximum number
of disjoint edges

Partition the graph
into triangles

Delete vertices to make
the graph bipartite

Separate two vertices by the
optimal vertex removals

Packing Problems Hitting Problems

2

A Set of Unrelated Problems

Clique Covering Number

Triangle Partition

Odd Cycle Packing

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

H-Hitting

Chordal Deletion

Tree Cover

Packing Problems

Hitting Problems

2

A Set of Unrelated Problems

Clique Covering Number

Triangle Partition

Odd Cycle Packing

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

H-Hitting

Chordal Deletion

Tree Cover

Packing Problems Hitting Problems

2

Packing Problems

Clique Covering Number

Triangle Partition

Odd Cycle Packing

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

H-Hitting

Chordal Deletion

Tree Cover

3

Packing Problems

H-Packing for a fixed graph H

Input: A graph G, an integer ‘.

Task: Pack ‘ copies of H in a
vertex-disjoint way in G.

Maximum Matching:
H = K2 “Edge Packing”

Triangle Covering:
H = C3 “Triangle Packing”

H-Packing where
H =

3

Packing Problems

H-Packing for a fixed graph H

Input: A graph G, an integer ‘.

Task: Pack ‘ copies of H in a
vertex-disjoint way in G.

Maximum Matching:
H = K2 “Edge Packing”

Triangle Covering:
H = C3 “Triangle Packing”

H-Packing where
H =

3

Packing Problems

H-Packing for a fixed graph H

Input: A graph G, an integer ‘.

Task: Pack ‘ copies of H in a
vertex-disjoint way in G.

Maximum Matching:
H = K2 “Edge Packing”

Triangle Covering:
H = C3 “Triangle Packing”

H-Packing where
H =

3

Packing Problems

H-Packing for a fixed graph H

Input: A graph G, an integer ‘.

Task: Pack ‘ copies of H in a
vertex-disjoint way in G.

Maximum Matching:
H = K2 “Edge Packing”

Triangle Covering:
H = C3 “Triangle Packing”

H-Packing where
H =

3

Hitting Problems

Clique Covering Number

Triangle Partition

Odd Cycle Packing

Maximum Matching

Cycle Cover Odd Cycle Transversal

Feedback Vertex Set

Minimum s-t-cut

Vertex Cover

H-Hitting

Chordal Deletion

Tree Cover

4

Hitting Problems

H-Hitting for a fixed graph H

Input: A graph G, an integer k .

Task: Delete k vertices such that
no copy of H remains in G.

Triangle Hitting:
H = C3 = a triangle

Vertex Cover:
H = K2 “Edge Hitting”

H-Hitting where
H =

4

Hitting Problems

H-Hitting for a fixed graph H

Input: A graph G, an integer k .

Task: Delete k vertices such that
no copy of H remains in G.

Triangle Hitting:
H = C3 = a triangle

Vertex Cover:
H = K2 “Edge Hitting”

H-Hitting where
H =

4

Hitting Problems

H-Hitting for a fixed graph H

Input: A graph G, an integer k .

Task: Delete k vertices such that
no copy of H remains in G.

Triangle Hitting:
H = C3 = a triangle

Vertex Cover:
H = K2 “Edge Hitting”

H-Hitting where
H =

Deleted Vertices = Vertex Cover!

4

Hitting Problems

H-Hitting for a fixed graph H

Input: A graph G, an integer k .

Task: Delete k vertices such that
no copy of H remains in G.

Triangle Hitting:
H = C3 = a triangle

Vertex Cover:
H = K2 “Edge Hitting”

H-Hitting where
H =

4

Hitting Problems

H-Hitting for a fixed graph H

Input: A graph G, an integer k .

Task: Delete k vertices such that
no copy of H remains in G.

Triangle Hitting:
H = C3 = a triangle

Vertex Cover:
H = K2 “Edge Hitting”

H-Hitting where
H =

also known as covering or transversal

4

Hitting Meets Packing

Packing
problems

Hitting
problems

5

Hitting Meets Packing

Packing
problems

Hitting
problems

5

Hitting Meets Packing

Duality
results

Packing
problems

Hitting
problems

Duality Results:
If we destroy all copies of H by deleting k vertices,
then we can pack at most k copies of H.

5

Hitting Meets Packing

Duality
results

Erdős–Pósa
property

Packing
problems

Hitting
problems

Erdős-Pósa property:
If we can pack ‘ cycles,
then we can hit all cycles by removing k = O(‘ log ‘) vertices.

5

Hitting Meets Packing

H-HitPack
problem

Duality
results

Erdős–Pósa
property

Packing
problems

Hitting
problems

H-HitPack:
A generalization of Hitting and Packing
that makes both problems “more robust” (notion of stability).

5

H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =

6

H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =

H-Packing
(k = 0, ‘ = 4)

6

H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =

H-Hitting
(k = 7, ‘ = 0)

6

H-HitPack

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we
cannot pack ‘+ 1 copies of H.

Graph H =

H-HitPack
(k = 3, ‘ = 2)

6

Our Contribution

Fix a connected graph H:

Theorem (Algorithmic Results)

H-HitPack can be solved in time 22
O(tw log tw) · |G|O(1).

Theorem (Hardness Results)

H-HitPack is complete for ΣP
2 = NPNP = NPcoNP.

No 22
o(tw) · |G|O(1)-time algorithm unless ETH fails.

7

Our Contribution

Fix a connected graph H:

Theorem (Algorithmic Results)

H-HitPack can be solved in time 22
O(tw log tw) · |G|O(1).

Theorem (Hardness Results)

H-HitPack is complete for ΣP
2 = NPNP = NPcoNP.

No 22
o(tw) · |G|O(1)-time algorithm unless ETH fails.

7

Our Contribution

Fix a connected graph H:

Theorem (Algorithmic Results)

H-HitPack can be solved in time 22
O(tw log tw) · |G|O(1).

Theorem (Hardness Results)

H-HitPack is complete for ΣP
2 = NPNP = NPcoNP.

No 22
o(tw) · |G|O(1)-time algorithm unless ETH fails.

Summary: The problem is double-exponential in treewidth!

Although the base problems are much simpler.

7

The Source of Hardness

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Delete k vertices such that we cannot pack ‘+ 1 copies of H.

Once we “guessed” the set S, we need to argue
about all possible H-packings for the remaining graph!

Main Question: How does this affect the algorithm?

8

The Source of Hardness

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Is there a set S of at most k vertices

 ∃

such that every H-packing in G − S

 ∀

contains at most ‘ copies of H.

Once we “guessed” the set S, we need to argue
about all possible H-packings for the remaining graph!

Main Question: How does this affect the algorithm?

8

The Source of Hardness

H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Is there a set S of at most k vertices

 ∃

such that every H-packing in G − S

 ∀

contains at most ‘ copies of H.

Once we “guessed” the set S, we need to argue
about all possible H-packings for the remaining graph!

Main Question: How does this affect the algorithm?

8

The Source of Hardness
H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Is there a set S of at most k vertices ∃
such that every H-packing in G − S ∀
contains at most ‘ copies of H.

Once we “guessed” the set S, we need to argue
about all possible H-packings for the remaining graph!

Hints at the ΣP
2 -hardness

Main Question: How does this affect the algorithm?

8

The Source of Hardness
H-HitPack for a fixed graph H

Input: A graph G, integers k and ‘.

Task:
Is there a set S of at most k vertices ∃
such that every H-packing in G − S ∀
contains at most ‘ copies of H.

Once we “guessed” the set S, we need to argue
about all possible H-packings for the remaining graph!

Hints at the ΣP
2 -hardness

Main Question: How does this affect the algorithm?

8

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea

Fix a bag of the decomposition (i.e., a separator):

1 Guess the deleted vertices.

2 For each partial H-packing,
store the size of the packing.

3 If there is a packing with > ‘

copies of H, then discard the
current guess.

 |H||G| packings to consider!

9

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!

 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag
3 Discard very small packings
 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!

 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag
3 Discard very small packings
 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.

 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag
3 Discard very small packings
 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag
3 Discard very small packings
 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag

3 Discard very small packings

 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag

3 Discard very small packings

 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag

3 Discard very small packings

 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag

3 Discard very small packings

 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Algorithmic Idea: Improving the Running Time

1 Only the intersection with the bag matters!
 Need a partition of the bag and mappings from there to H.
 twtw · |H|tw possible types of packings

2 For each type, the packing can have size ∈ {0; 1; 2; : : : ; ‘}
(if it is larger, we removed the “wrong” vertices)

 ‘twO(tw) states for each bag

3 Discard very small packings

 only O(tw · |H|)twO(tw) states for each bag

Theorem

For every connected graph H, H-HitPack can be solved in time 22
O(tw log tw) .

10

Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Connected 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

11

Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Square no 22
o(tw log tw)

Connected 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

11

Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Square no 22
o(tw log tw)

Connected 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

11

Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Square no 22
o(tw log tw)

Connected ≥ 3 vtcs. 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

Edge

11

Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Square no 22
o(tw log tw)

Connected ≥ 3 vtcs. 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

Edge 2poly(tw) no 2o(tw) † NP †

† Previously known

11

Our Contribution

Graph H Upper Bound Lower Bound
under ETH

Completeness

Square no 22
o(tw log tw)

Connected ≥ 3 vtcs. 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

Edge 2poly(tw) no 2o(tw) † NP †

No changes in the treewidth-DP needed! † Previously known

11

The Special Case of Edge-HitPack

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: “top-down approach” for the computation
 DP considers all theoretically possible states

Our DP: “bottom-up approach”
 DP considers only those states that actually exist

We give a non-constructive proof using (delta-)matroids to bound the
number of states.

 Significantly faster algorithm without any changes!

12

The Special Case of Edge-HitPack

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: “top-down approach” for the computation
 DP considers all theoretically possible states

Our DP: “bottom-up approach”
 DP considers only those states that actually exist

We give a non-constructive proof using (delta-)matroids to bound the
number of states.

 Significantly faster algorithm without any changes!

12

The Special Case of Edge-HitPack

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: “top-down approach” for the computation
 DP considers all theoretically possible states

Our DP: “bottom-up approach”
 DP considers only those states that actually exist

We give a non-constructive proof using (delta-)matroids to bound the
number of states.

 Significantly faster algorithm without any changes!

12

The Special Case of Edge-HitPack

Covers Maximum Matching (Packing) and Vertex Cover (Hitting)

Standard DP: “top-down approach” for the computation
 DP considers all theoretically possible states

Our DP: “bottom-up approach”
 DP considers only those states that actually exist

We give a non-constructive proof using (delta-)matroids to bound the
number of states.

 Significantly faster algorithm without any changes!

12

Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Assume we deleted k vertices

Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices

 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).

13

Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Assume we deleted k vertices
Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices

 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).

13

Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

Assume we deleted k vertices

Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices
 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).

13

Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

Assume we deleted k vertices
Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices

 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).

13

Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

Assume we deleted k vertices
Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices

 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).

13

Generalizing H-HitPack Further

Instead of a fixed graph H, we allow arbitrary graph objects X

X = “class of all cycles”:
generalizes Feedback Vertex Set and Cycle Packing

Why treewidth might not always be the best parameter:

Assume we deleted k vertices
Erdős–Pósa: Can destroy ‘ cycles by deleting O(‘ log ‘) vertices

 Treewidth is O(k + ‘ log ‘)

 Algorithm with running time 22
(k+‘) poly log(k+‘)

Theorem
Cycle-HitPack can be solved in time 2poly(k+‘).

13

Our Contribution

Graph H Upper Bounds LB under ETH Completeness

Square no 22
o(tw log tw)

Conn 3+ vtx 2O((k+‘) log(k+‘)) 22
O(tw log tw) no 22

o(tw)
ΣP
2 = NPNP

q-Clique 22
O(tw)

Edge 3k+‘ 2poly(tw) no 2o(tw) NP

Class of all
cycles

2poly(k+‘) 22
O(tw log tw) no 22

o(tw log tw)
ΣP
2

14

Conclusion

X -HitPack generalizes X -Hitting and X -Packing

Significantly harder than base problems
New algorithmic ideas are needed
Some cases still allow for faster algorithms

Open questions:

What about induced subgraphs or directed versions?
Approximation results by relaxing the condition on k and ‘?
Is there a non-trivial relation to Erdős–Pósa for other graph classes?

Take away: Design the DPs to not waste time on impossible states.

Full version: arXiv:2402.14927

15

Conclusion

X -HitPack generalizes X -Hitting and X -Packing

Significantly harder than base problems
New algorithmic ideas are needed
Some cases still allow for faster algorithms

Open questions:

What about induced subgraphs or directed versions?
Approximation results by relaxing the condition on k and ‘?
Is there a non-trivial relation to Erdős–Pósa for other graph classes?

Take away: Design the DPs to not waste time on impossible states.

Full version: arXiv:2402.14927

15

Conclusion

X -HitPack generalizes X -Hitting and X -Packing

Significantly harder than base problems
New algorithmic ideas are needed
Some cases still allow for faster algorithms

Open questions:

What about induced subgraphs or directed versions?
Approximation results by relaxing the condition on k and ‘?
Is there a non-trivial relation to Erdős–Pósa for other graph classes?

Take away: Design the DPs to not waste time on impossible states.

Full version: arXiv:2402.14927
15

Appendix

The Vanilla Treewidth-DP

How does a typical treewidth-DP work?

Identify the states of a vertex in a (partial) solution;
usually a constant number of states, say c .

At each node of the tree decomposition:
Adjust the states based on the changes in the graph.

 Running time of ctw2 · nO(1)

(better convolution techniques frequently give ctw · nO(1)).

For H-HitPack the states are “deleted” and “not deleted”, so c = 2?!

Then why is the problem double-exponential in treewidth?

1

The Vanilla Treewidth-DP

How does a typical treewidth-DP work?

Identify the states of a vertex in a (partial) solution;
usually a constant number of states, say c .

At each node of the tree decomposition:
Adjust the states based on the changes in the graph.

 Running time of ctw2 · nO(1)

(better convolution techniques frequently give ctw · nO(1)).

For H-HitPack the states are “deleted” and “not deleted”, so c = 2?!

Then why is the problem double-exponential in treewidth?

1

The Vanilla Treewidth-DP

How does a typical treewidth-DP work?

Identify the states of a vertex in a (partial) solution;
usually a constant number of states, say c .

At each node of the tree decomposition:
Adjust the states based on the changes in the graph.

 Running time of ctw2 · nO(1)

(better convolution techniques frequently give ctw · nO(1)).

For H-HitPack the states are “deleted” and “not deleted”, so c = 2?!

Then why is the problem double-exponential in treewidth?

1

The Vanilla Treewidth-DP

How does a typical treewidth-DP work?

Identify the states of a vertex in a (partial) solution;
usually a constant number of states, say c .

At each node of the tree decomposition:
Adjust the states based on the changes in the graph.

 Running time of ctw2 · nO(1)

(better convolution techniques frequently give ctw · nO(1)).

For H-HitPack the states are “deleted” and “not deleted”, so c = 2?!

Then why is the problem double-exponential in treewidth?

1

The Vanilla Treewidth-DP

How does a typical treewidth-DP work?

Identify the states of a vertex in a (partial) solution;
usually a constant number of states, say c .

At each node of the tree decomposition:
Adjust the states based on the changes in the graph.

 Running time of ctw2 · nO(1)

(better convolution techniques frequently give ctw · nO(1)).

For H-HitPack the states are “deleted” and “not deleted”, so c = 2?!

Then why is the problem double-exponential in treewidth?

1

Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task: Decide if ’ can be satisfied.

SAT H-HitPack
Select a variable assignment Delete vertices
Select every clause (for verification) Consider every packing
All literals are false Packing is too large

2

Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task:
Does there exist an assignment to the variables
such that for all clauses at least one literal is true.

SAT H-HitPack
Select a variable assignment Delete vertices
Select every clause (for verification) Consider every packing
All literals are false Packing is too large

2

Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task:
Does there exist an assignment to the variables
such that for all clauses not all literals are false.

SAT H-HitPack
Select a variable assignment Delete vertices
Select every clause (for verification) Consider every packing
All literals are false Packing is too large

2

Double-Exponential Lower Bound

Reduction from SAT to H-HitPack

SAT
Input: CNF-formula ’

Task:
Does there exist an assignment to the variables
such that for all clauses not all literals are false.

SAT H-HitPack
Select a variable assignment Delete vertices
Select every clause (for verification) Consider every packing
All literals are false Packing is too large

2

Double-Exponential Lower Bound

Create an instance with treewidth O(logm).

x3 = false

“0”

“1”

x3 = truex2 = false x2 = truex1 = false x1 = true

Cx1;1;1 Cx2;1;3 Cx3;3;2

bit 1 bit 0

Cx3;2;3Cx2;2;2Cx1;2;1

3

	Appendix

