
Fine-Grained Complexity of Regular Expression
Pattern Matching and Membership

ESA 2020

Philipp Schepper

CISPA Helmholtz Center for Information Security
Saarbrücken Graduate School of Computer Science

Saarland Informatics Campus, Saarbrücken, Germany

Motivation

Regular Expressions are used for

Text analysis and manipulation (e.g. unix tools grep and sed)

Network analysis

Searching for proteins in DNA sequences

Human-computer interaction

Definition (Membership)

Input: Text t of length n and pattern p of size m.
Question: Does p generate t, i.e. t ∈ L(p)?

Definition (Pattern Matching)

Question: Does p generate some substring of t,
i.e. t ∈M(p) := Σ∗L(p)Σ∗?

How fast can these problems be solved? O(nm)! o(nm)? Ω(nm)?

2/20

Agenda

1. Introduction and Results

2. Upper Bounds

3. Lower Bounds

4. Conclusion

3/20

Recap: Regular Expressions

Name Regular
Expression

Language

Symbol ff L(ff) := {ff}
Alternative (p | q) L(p | q) := L(p) ∪ L(q)

Concatenation p ◦ q L(p ◦ q) := {tu | t ∈ L(p) ∧ u ∈ L(q)}
Kleene Plus p+ L(p+) :=

S∞
i=1 L(p ◦ : : : ◦ p| {z }

i

)

Kleene Star p∗ L(p∗) := {"} ∪ L(p+)

n text length, m pattern size (=number of operators and symbols)

4/20

Current Results

Upper bounds

Classical (Thompson 1968): O(nm)

Myers 1992: O(nm= log n)

Bille and Thorup 2009: Ō(nm= log3=2 n) (Ō hides poly log log n factors)

Lower bounds

Backurs and Indyk 2016: Ω((nm)1−›),
assuming the Strong Exponential Time Hypothesis (SETH)

Abboud and Bringmann 2018: Ω(nm= log7+› n),
assuming the Formula-Sat Hypothesis (FSH)

→ Matching lower and upper bound up to a constant number of log-factors
for the general case!

What about “easier” patterns? What is an “easy” pattern?

5/20

Homogeneous Patterns

Represent the patterns as trees:

Leaves are labeled with symbols from Σ

Inner nodes are labeled with operations (|; ◦;+; ?)

Definition (Homogeneous Patterns)

For each level of the corresponding tree the inner nodes have to be labeled
with the same operation. The type is the sequence of operators on the path
from the root to the deepest leaf.

6/20

Homogeneous Patterns – Example I

Definition (Homogeneous Patterns)

For each level of the corresponding tree the inner nodes have to be labeled
with the same operation. The type is the sequence of operators on the path
from the root to the deepest leaf.

+

◦

|

◦

a b c

c

|

a ◦

d c

c |

◦

d b

c ◦

b d

[(abc | c)(a | dc)c(db | c | bd)]+:
Homogeneous pattern of type +◦|◦ and depth 4.

7/20

Homogeneous Patterns – Example II

Definition (Homogeneous Patterns)

For each level of the corresponding tree the inner nodes have to be labeled
with the same operation. The type is the sequence of operators on the path
from the root to the deepest leaf.

◦

?

◦

b c

|

◦

a b

?

c

+

c

(bc)∗(ab | c∗)c+: Not a homogeneous pattern!

8/20

Current Results

General Patterns
Ō(nm= log3=2 n) and Ω(nm= log7+› n), assuming FSH
Homogeneous Patterns
Several common problems need only homogeneous patterns and are solvable
in time O(n log2 m +m) (e.g. dictionary, superset and string matching).

Dichotomy for homogeneous types [BI16], [BGL17]

It suffices to analyse few pattern types of constant depth

For “easy” patterns: strongly sub-quadratic time algorithms

For “hard” patterns: Ω((nm)1−›) lower bound, assuming SETH

Questions: Does the general lower bound transfer to the hard patterns?
Are there super-poly-logarithmic improvements as for APSP and OV?

9/20

Our Results
Before:
In general: Ō(nm= log3=2 n)
For “hard” homogeneous patterns: Ω((nm)1−›), assuming SETH.
New bounds assuming FSH:

◦+|, ◦|+,
◦+◦, ◦|◦,
◦?

|+|◦ |◦|, |◦+ +|◦|, +|◦+

Pattern
matching Θ

“
nm

poly log n

” Θ(n +m) nm
2Ω(

√
log n)

same as
|◦|, |◦+

Membership Θ
“

nm
poly log n

”
Θ(n +m) nm

2Ω(
√

log n)

2Ω(
√

log n) ∈ !(poly log n):
Currently fastest algorithm and best we can hope for under SETH.

For “ultra-hard” pattern types: The general algorithm is optimal up to a
constant number of log-factors.

Tight dichotomy for homogeneous pattern types (up to log-factors).

10/20

Upper Bounds

The Polynomial Method

Originally used for circuit lower bounds
(Razborov 1987 and Smolensky 1987)

Method to transform boolean circuits into polynomials

Adopted by Williams in 2014 to improve algorithms for APSP

Yields super-poly-logarithmic runtime improvements

Idea: Solve the task for many small sub-problems in parallel

Orthogonal Vectors (OV)

Input: Sets U; V ⊆ {0; 1}d of n vectors each.
Question: Are there u ∈ U; v ∈ V such that 〈u; v〉 = 0?

Lemma (Chan and Williams 2016)

For d = 2Θ(
√

log n) OV can be solved in time n2=2Ω(
√

log n) deterministically.

11/20

Fast Algorithm

Focus on patterns with type |◦|: [(a | b)(b | c)d] | [ab(a | c | d)] | [bd]
Main observation: Patterns can be split into independent sub-patterns!

Define a threshold f ∈ 2Θ(
√

log n)

Split p into large (matching > f symbols) and small sub-patterns

Solve each of the ≤ k = m=f large sub-patterns of type ◦| with the
known near-linear time algorithm:

O

0@ kX
i=1

n log2 mi +mi

1A = O
„
m

f
n log2 n +m

«
=

nm

2Ω(
√

log n)

Reduce small sub-patterns to OV with dimension d = 2Θ(
√

log n):

nm

2Ω(
√

log n)

12/20

Small Sub-Patterns

Assume w.l.o.g. that all sub-patterns match exactly f symbols.

Check whether there is a sub-pattern q and an offset i ∈ [n] such that:

t1t2 : : : : : : ti ti+1 : : : ti+f−1 : : : : : : tn−1tn

q1q2 : : : qf

Use all length f substrings of t as one set of vectors

Use sub-patterns as the other set of vectors

Encode orthogonality using characteristic vector for Σ:
ti = a
qj = a | b

(1; 0; 0)
(1; 1; 0)

Σ = {a; b; c}

(1; 0; 0)
(0; 0; 1)

n text-vectors and ≤ m pattern-vectors

dimension d = f · |Σ| ∈ 2Θ(
√

log n) if |Σ| ∈ 2O(
√

log n)

Use Bloom-Filters for larger alphabets to keep dimension small

13/20

Lower Bounds

Satisfiability Problems

SETH rules out polynomial improvements.
We want to rule out log-factor improvements!
→ We need a stronger assumption!

Monotone De Morgan Formula

A node labeled tree. Each inner node is labeled with AND or OR. Each leaf
is labeled with a variable. Size = number of leaves.

Formula-Pair (Abboud and Bringmann 2018)

Input: A monotone De Morgan formula F with s inputs, each input is used
exactly once, and sets A;B ⊆ {0; 1}s=2 of size n and m.
Task: Check whether there are a ∈ A; b ∈ B such that F (a; b) = true:

Formula-Pair Hypothesis (FPH)

For all k ≥ 1: For a monotone De Morgan formula F of size s and sets
A;B ⊆ {0; 1}s=2 of n half-assignments each, Formula-Pair cannot be
solved in time O(n2sk=log3k+2 n), in the Word-RAM model.

14/20

General Idea

Reduce Formula-Pair to pattern matching with a text t and pattern p
of a specific type:

(∃a ∈ A; b ∈ B : F (a; b) = true) ⇐⇒ t ∈M(p)

We first encode the formula such that for all a ∈ A; b ∈ B:

F (a; b) = true ⇐⇒ t(a) ∈ L(p(b))

Encode the INPUT, AND and OR gates of the formula inductively.

Focus on patterns of type ◦+◦: ab(bc)+b+(cd)+

15/20

Encoding the Formula I

INPUT Gate Fg (a; b) = ai

if ai = 1
tg :=0ai1 ug :=0011

pg :=0+11+ qg :=0+1+

For Fg (a; b) = bi define: tg := 011 pg := 0+bi1
+

AND Gate Fg (a; b) = Fg1 (a; b) ∧ Fg2 (a; b)

if ti ∈ L(pi)
for i = 1; 2

tg :=t1Gt2 ug :=u1Gu2

pg :=p1Gp2 qg :=q1Gq2

Define separator gadget G := 2〈g〉2.
Need universal text ug and pattern qg for OR gate.

16/20

Encoding the Formula II

OR Gate Fg (a; b) = Fg1 (a; b) ∨ Fg2 (a; b)

tg := (u1Gu2)G(u1Gu2)G(t1Gt2)G(u1Gu2)G(u1Gu2)

pg := (u1Gu2G)+(p1Gq2)G(q1Gp2)(Gu1Gu2)+

ug := (u1Gu2)G(u1Gu2)G(u1Gu2)G(u1Gu2)G(u1Gu2)

qg := (u1Gu2)G(u1Gu2)G(q1Gq2)G(u1Gu2)G(u1Gu2)

Lemma (Size bound for the encoding)

|ur |; |tr |; |pr |; |qr | ∈ O(5d(F)s log s), with r as root of F .

Proof.

|pg | ∈ O(|ug |) = O(|tg |) = O(|qg |).
By definition: |ug | ≤ 5|u1|+ 5|u2|+ O(log s)
Inductively over the d(Fg) levels of Fg : |ug | ≤ O(5d(Fg)s log s).

17/20

Outer OR

Formula-Pair

Task: Check whether ∃a ∈ A; b ∈ B : F (a; b) = true.

t :=
K
a∈A

`
33ur3ur3ur3t(a)3ur3ur3ur3ur

´
p := 3ur3ur3ur3ur

K
b∈B

`
3+(ur3)+ur3

+qr3p(b)3(ur3)+qr
´
3ur3ur3ur3ur

Lemma (Correctness)

(∃a ∈ A; b ∈ B : F (a; b) = true) ⇐⇒ t ∈M(p)

18/20

The Lower Bound

Text length and pattern size is O(n5ds log s).

We can reduce the depth of a formula by increasing its size:
d → d ′ = O(log s) and s → s ′ = O(s2). (e.g. Bonet and Buss 1994)

The final text length and the pattern size is O(ns15).

Assume a O(NM= log92 N) algorithm for ◦+◦-pattern matching:

O

ns15 · ns15

log92(ns15)

!
⊆ O

n2s30

log92 n

!

Formula-Pair Hypothesis (FPH)

For all k ≥ 1: For a monotone De Morgan formula F of size s and sets
A;B ⊆ {0; 1}s=2 of n half-assignments each, Formula-Pair cannot be
solved in time O(n2sk=log3k+2 n), in the Word-RAM model.

19/20

Conclusion

Conclusion

Before: Upper bound: Ō(nm= log3=2 n)
Lower bound: Ω((nm)1−›), assuming SETH.

New bounds
assuming

FPH

◦+|, ◦|+,
◦+◦, ◦|◦,
◦?

|+|◦ |◦|, |◦+ +|◦|, +|◦+

Pattern
matching Θ

“
nm

poly log n

” Θ(n +m) nm
2Ω(

√
log n)

same as
|◦|, |◦+

Membership Θ
“

nm
poly log n

”
Θ(n +m) nm

2Ω(
√

log n)

→ A tight dichotomy for the hard pattern types.

20/20

Additional Material

Satisfiability Problems I

De Morgan Formula

A node labeled tree. Each inner node is labeled with AND or OR. Each leaf
is labeled with a variable or its negation. Size = number of leaves

Formula-SAT (Abboud and Bringmann 2018)

Input: A De Morgan formula F of size s on n variables.
Task: Check whether there is a satisfying assignment for F .

Formula-SAT Hypothesis (FSH) (Abboud and Bringmann 2018)

Formula-SAT on De Morgan formulas of size s = n3+Ω(1) cannot be
solved in O(2n=n›) time, for some › > 0, in the Word-RAM model.

FSH also used as hypothesis for the lower bound for the general case.

2/4

Satisfiability Problems II

Formula-Pair (Abboud and Bringmann 2018)

Input: A monotone De Morgan formula F with s inputs, each input is used
exactly once, and sets A;B ⊆ {0; 1}s=2 of size n and m, respectively.
Task: Check whether there are a ∈ A; b ∈ B such that F (a; b) = true:

Formula-SAT reduces to Formula-Pair by writing down all
half-assignments explicitly. We can also ensure that each input is used
exactly once.

Formula-Pair Hypothesis (FPH)

For all k ≥ 1: For a monotone De Morgan formula F of size s and sets
A;B ⊆ {0; 1}s=2 of n half-assignments each, Formula-Pair cannot be
solved in time O(n2sk=log3k+2 n), in the Word-RAM model.

3/4

Reducing Pattern Matching to Membership

We can reduce pattern matching to membership for the pattern types for
which we showed improved lower bounds.
Example for patterns of type ◦+|:
t ′ := fftff where ff ∈ Σ

p′ := Σ+pΣ+ = (ff1 | ff2 | : : : | ffs)+p(ff1 | ff2 | : : : | ffs)+

t ∈M(p) ⇐⇒ t ′ ∈ L(p′)

“⇒” The first Σ+ matches the initial ff and the not matched prefix of t.
Analogous for the second Σ+.
“⇐” The two Σ+ match at least the initial and final ff.
Thus, p has to match some substring of t (possibly the empty string).

4/4

	Introduction and Results
	Upper Bounds
	Lower Bounds
	Conclusion
	Appendix
	Additional Material

