

Fine-Grained Complexity of Regular Expression Pattern Matching and Membership ESA 2020

Philipp Schepper

CISPA Helmholtz Center for Information Security Saarbrücken Graduate School of Computer Science

Saarland Informatics Campus, Saarbrücken, Germany

Motivation

Regular Expressions are used for

- Text analysis and manipulation (e.g. unix tools grep and sed)
- Network analysis
- Searching for proteins in DNA sequences
- Human-computer interaction

Definition (Membership)

Input: Text t of length n and pattern p of size m.

Question: Does p generate t, i.e. $t \in \mathcal{L}(p)$?

Definition (Pattern Matching)

Question: Does *p* generate some *substring* of *t*,

i.e. $t \in \mathcal{M}(p) \coloneqq \Sigma^* \mathcal{L}(p) \Sigma^*$?

How fast can these problems be solved? $O(nm)! \ o(nm)? \ \Omega(nm)$?

Agenda

- 1. Introduction and Results
- 2. Upper Bounds
- 3. Lower Bounds
- 4. Conclusion

Recap: Regular Expressions

Name	Regular Expression	Language
Symbol	σ	$\mathcal{L}(\sigma) \coloneqq \{\sigma\}$
Alternative	$(p \mid q)$	$\mathcal{L}(p \mid q) \coloneqq \mathcal{L}(p) \cup \mathcal{L}(q)$
Concatenation	$p \circ q$	$\mathcal{L}(p \circ q) \coloneqq \{tu \mid t \in \mathcal{L}(p) \land u \in \mathcal{L}(q)\}$
Kleene Plus	$ ho^+$	$\mathcal{L}(p^+) \coloneqq igcup_{i=1}^\infty \mathcal{L}(p \circ \ldots \circ p)$
Kleene Star	p*	$\mathcal{L}(p^*) \coloneqq \{arepsilon\} \cup \mathcal{L}(p^+)$

n text length, m pattern size (=number of operators and symbols)

Current Results

Upper bounds

- Classical (Thompson 1968): $\mathcal{O}(nm)$
- Myers 1992: $\mathcal{O}(nm/\log n)$
- Bille and Thorup 2009: $\bar{\mathcal{O}}(nm/\log^{3/2} n)$ ($\bar{\mathcal{O}}$ hides poly log log n factors)

Lower bounds

- Backurs and Indyk 2016: $\Omega((nm)^{1-\epsilon})$, assuming the STRONG EXPONENTIAL TIME HYPOTHESIS (SETH)
- Abboud and Bringmann 2018: $\Omega(nm/\log^{7+\epsilon}n)$, assuming the FORMULA-SAT HYPOTHESIS (FSH)
- \rightarrow Matching lower and upper bound up to a constant number of log-factors for the **general** case!

What about "easier" patterns? What is an "easy" pattern?

Homogeneous Patterns

Represent the patterns as trees:

- lacktriangle Leaves are labeled with symbols from Σ
- Inner nodes are labeled with operations $(|, \circ, +, \star)$

Definition (Homogeneous Patterns)

For each level of the corresponding tree the inner nodes have to be labeled with the same operation. The *type* is the sequence of operators on the path from the root to the deepest leaf.

Homogeneous Patterns – Example I

Definition (Homogeneous Patterns)

For each level of the corresponding tree the inner nodes have to be labeled with the same operation. The *type* is the sequence of operators on the path from the root to the deepest leaf.

 $[(abc \mid c)(a \mid dc)c(db \mid c \mid bd)]^+$: Homogeneous pattern of type $+ \circ | \circ$ and depth 4.

Homogeneous Patterns – Example II

Definition (Homogeneous Patterns)

For each level of the corresponding tree the inner nodes have to be labeled with the same operation. The *type* is the sequence of operators on the path from the root to the deepest leaf.

 $(bc)^*(ab \mid c^*)c^+$: Not a homogeneous pattern!

Current Results

General Patterns

 $\bar{\mathcal{O}}(nm/\log^{3/2} n)$ and $\Omega(nm/\log^{7+\epsilon} n)$, assuming FSH

Homogeneous Patterns

Several common problems need only homogeneous patterns and are solvable in time $\mathcal{O}(n\log^2 m + m)$ (e.g. dictionary, superset and string matching).

Dichotomy for homogeneous types [BI16], [BGL17]

- It suffices to analyse few pattern types of constant depth
- For "easy" patterns: strongly sub-quadratic time algorithms
- For "hard" patterns: $\Omega((nm)^{1-\epsilon})$ lower bound, assuming SETH

Questions: Does the general lower bound transfer to the hard patterns? Are there super-poly-logarithmic improvements as for APSP and OV?

Our Results

Before:

In general: $\bar{\mathcal{O}}(nm/\log^{3/2} n)$

For "hard" homogeneous patterns: $\Omega((nm)^{1-\epsilon})$, assuming SETH.

New bounds assuming FSH:

- $2^{\Omega(\sqrt{\log n})} \in \omega(\text{poly} \log n)$: Currently fastest algorithm and best we can hope for under SETH.
- For "ultra-hard" pattern types: The general algorithm is optimal up to a constant number of log-factors.

Tight dichotomy for homogeneous pattern types (up to log-factors).

Upper Bounds

The Polynomial Method

- Originally used for circuit lower bounds (Razborov 1987 and Smolensky 1987)
- Method to transform boolean circuits into polynomials
- Adopted by Williams in 2014 to improve algorithms for APSP
- Yields super-poly-logarithmic runtime improvements
- Idea: Solve the task for many small sub-problems in parallel

ORTHOGONAL VECTORS (OV)

Input: Sets $U, V \subseteq \{0, 1\}^d$ of n vectors each.

Question: Are there $u \in U$, $v \in V$ such that $\langle u, v \rangle = 0$?

Lemma (Chan and Williams 2016)

For $d = 2^{\Theta(\sqrt{\log n})}$ OV can be solved in time $n^2/2^{\Omega(\sqrt{\log n})}$ deterministically.

Fast Algorithm

Focus on patterns with type $|\circ|$: $[(a \mid b)(b \mid c)d] \mid [ab(a \mid c \mid d)] \mid [bd]$ Main observation: Patterns can be split into independent sub-patterns!

- Define a threshold $f \in 2^{\Theta(\sqrt{\log n})}$
- Split p into large (matching > f symbols) and small sub-patterns
- Solve each of the $\leq k = m/f$ large sub-patterns of type \circ | with the known near-linear time algorithm:

$$\mathcal{O}\left(\sum_{i=1}^{k} n \log^2 m_i + m_i\right) = \mathcal{O}\left(\frac{m}{f} n \log^2 n + m\right) = \frac{nm}{2^{\Omega(\sqrt{\log n})}}$$

■ Reduce small sub-patterns to OV with dimension $d = 2^{\Theta(\sqrt{\log n})}$:

$$\frac{nm}{2^{\Omega(\sqrt{\log n})}}$$

Small Sub-Patterns

Assume w.l.o.g. that all sub-patterns match exactly f symbols.

Check whether there is a sub-pattern q and an offset $i \in [n]$ such that:

- Use all length f substrings of t as one set of vectors
- Use sub-patterns as the other set of vectors
- Encode orthogonality using characteristic vector for Σ :

$$t_i = a$$
 $q_j = a \mid b$

$$(1, 0, 0) \longrightarrow (1, 0, 0)$$

$$(0, 0, 1)$$

$$\Sigma = \{a, b, c\}$$

- n text-vectors and $\leq m$ pattern-vectors
- dimension $d = f \cdot |\Sigma| \in 2^{\Theta(\sqrt{\log n})}$ if $|\Sigma| \in 2^{\mathcal{O}(\sqrt{\log n})}$
- Use Bloom-Filters for larger alphabets to keep dimension small

Lower Bounds

Satisfiability Problems

SETH rules out **polynomial** improvements.

We want to rule out log-factor improvements!

 \rightarrow We need a stronger assumption!

Monotone De Morgan Formula

A node labeled tree. Each inner node is labeled with AND or OR. Each leaf is labeled with a variable. Size = number of leaves.

FORMULA-PAIR (Abboud and Bringmann 2018)

Input: A monotone De Morgan formula F with s inputs, each input is used exactly once, and sets $A, B \subseteq \{0, 1\}^{s/2}$ of size n and m.

Task: Check whether there are $a \in A$, $b \in B$ such that F(a, b) = true.

FORMULA-PAIR HYPOTHESIS (FPH)

For all $k \geq 1$: For a monotone De Morgan formula F of size s and sets $A, B \subseteq \{0,1\}^{s/2}$ of n half-assignments each, FORMULA-PAIR cannot be solved in time $\mathcal{O}(n^2 s^k/\log^{3k+2} n)$, in the Word-RAM model.

General Idea

Reduce **FORMULA-PAIR** to **pattern matching** with a text t and pattern p of a specific type:

$$(\exists a \in A, b \in B : F(a, b) = true) \iff t \in \mathcal{M}(p)$$

We first encode the formula such that for all $a \in A$, $b \in B$:

$$F(a, b) = \text{true} \iff t(a) \in \mathcal{L}(p(b))$$

Encode the INPUT, AND and OR gates of the formula inductively.

Focus on patterns of type $\circ+\circ$: $ab(bc)^+b^+(cd)^+$

Encoding the Formula I

INPUT Gate
$$F_g(a, b) = a_i$$

if
$$a_i = 1$$
 $p_g := 0 = 0 + 11 + q_g := 0 = 0 + 1 + q_g := 0 + q_g$

For
$$F_g(a, b) = b_i$$
 define: $t_g := 011$ $p_g := 0^+b_i1^+$

AND Gate
$$F_g(a, b) = F_{g_1}(a, b) \wedge F_{g_2}(a, b)$$

$$\begin{array}{c} \text{if } t_i \in \mathcal{L}(p_i) \\ \text{for } i=1,2 \end{array} \begin{array}{c} t_g := t_1 G t_2 \\ p_g := p_1 G p_2 \end{array} \begin{array}{c} u_g := u_1 G u_2 \\ q_g := q_1 G q_2 \end{array}$$

Define separator gadget $G := 2\langle g \rangle 2$.

Need universal text u_g and pattern q_g for OR gate.

Encoding the Formula II

OR Gate
$$F_{g}(a, b) = F_{g_1}(a, b) \vee F_{g_2}(a, b)$$

$$\begin{array}{lll} t_g := & (u_1Gu_2)G(u_1Gu_2)G(\textbf{t}_1G\textbf{t}_2)G(u_1Gu_2)G(u_1Gu_2) \\ p_g := & (u_1Gu_2G)^+(\textbf{p}_1Gq_2)G(q_1G\textbf{p}_2)(Gu_1Gu_2)^+ \\ u_g := & (u_1Gu_2)G(u_1Gu_2)G(u_1Gu_2)G(u_1Gu_2)G(u_1Gu_2) \\ q_g := & (u_1Gu_2)G(u_1Gu_2)G(\textbf{q}_1G\textbf{q}_2)G(u_1Gu_2)G(u_1Gu_2) \end{array}$$

Lemma (Size bound for the encoding)

$$|u_r|, |t_r|, |p_r|, |q_r| \in \mathcal{O}(5^{d(F)}s\log s)$$
, with r as root of F .

Proof.

$$|p_g| \in \mathcal{O}(|u_g|) = \mathcal{O}(|t_g|) = \mathcal{O}(|q_g|).$$

By definition: $|u_g| \le 5|u_1| + 5|u_2| + \mathcal{O}(\log s)$
Inductively over the $d(F_g)$ levels of F_g : $|u_g| \le \mathcal{O}(5^{d(F_g)}s\log s).$

Outer OR

FORMULA-PAIR

Task: Check whether $\exists a \in A, b \in B : F(a, b) = \text{true}$.

Lemma (Correctness)

$$(\exists a \in A, b \in B : F(a, b) = true) \iff t \in \mathcal{M}(p)$$

The Lower Bound

- Text length and pattern size is $\mathcal{O}(n5^d s \log s)$.
- We can reduce the depth of a formula by increasing its size: $d \to d' = \mathcal{O}(\log s)$ and $s \to s' = \mathcal{O}(s^2)$. (e.g. Bonet and Buss 1994)
- The final text length and the pattern size is $\mathcal{O}(ns^{15})$.
- Assume a $\mathcal{O}(NM/\log^{92}N)$ algorithm for $\circ+\circ$ -pattern matching:

$$\mathcal{O}\left(\frac{ns^{15} \cdot ns^{15}}{\log^{92}(ns^{15})}\right) \subseteq \mathcal{O}\left(\frac{n^2s^{30}}{\log^{92}n}\right)$$

FORMULA-PAIR HYPOTHESIS (FPH)

For all $k \ge 1$: For a monotone De Morgan formula F of size s and sets $A, B \subseteq \{0,1\}^{s/2}$ of n half-assignments each, FORMULA-PAIR cannot be solved in time $\mathcal{O}(n^2s^k/\log^{3k+2}n)$, in the Word-RAM model.

Conclusion

Conclusion

Before: Upper bound: $\overline{\mathcal{O}}(nm/\log^{3/2} n)$ Lower bound: $\Omega((nm)^{1-\epsilon})$, assuming SETH.

=	New bounds assuming FPH	o+ , o +, o+o, o o, o∗	+ 0	0 , 0+	+ 0 , + 0+
	Pattern matching	$\Theta\left(\frac{nm}{\operatorname{poly}\log n}\right)$	$\Theta(n+m)$	$\frac{nm}{2^{\Omega(\sqrt{\log n})}}$	same as
	Membership		$\Theta\left(\frac{nm}{\operatorname{poly}\log n}\right)$	$\Theta(n+m)$	$\frac{nm}{2^{\Omega(\sqrt{\log n})}}$

→ A tight dichotomy for the hard pattern types.

Satisfiability Problems I

De Morgan Formula

A node labeled tree. Each inner node is labeled with AND or OR. Each leaf is labeled with a variable or its negation. Size = number of leaves

FORMULA-SAT (Abboud and Bringmann 2018)

Input: A De Morgan formula F of size s on n variables.

Task: Check whether there is a satisfying assignment for F.

FORMULA-SAT HYPOTHESIS (FSH) (Abboud and Bringmann 2018)

FORMULA-SAT on De Morgan formulas of size $s=n^{3+\Omega(1)}$ cannot be solved in $\mathcal{O}(2^n/n^\epsilon)$ time, for some $\epsilon>0$, in the Word-RAM model.

FSH also used as hypothesis for the lower bound for the general case.

Satisfiability Problems II

FORMULA-PAIR (Abboud and Bringmann 2018)

Input: A monotone De Morgan formula F with s inputs, each input is used exactly once, and sets $A, B \subseteq \{0,1\}^{s/2}$ of size n and m, respectively. **Task:** Check whether there are $a \in A, b \in B$ such that F(a,b) = true.

FORMULA-SAT reduces to FORMULA-PAIR by writing down all half-assignments explicitly. We can also ensure that each input is used exactly once.

FORMULA-PAIR HYPOTHESIS (FPH)

For all $k \geq 1$: For a monotone De Morgan formula F of size s and sets $A, B \subseteq \{0,1\}^{s/2}$ of n half-assignments each, FORMULA-PAIR cannot be solved in time $\mathcal{O}(n^2 s^k/\log^{3k+2} n)$, in the Word-RAM model.

Reducing Pattern Matching to Membership

We can reduce pattern matching to membership for the pattern types for which we showed improved lower bounds.

Example for patterns of type $\circ+|$:

- $t' := \sigma t \sigma$ where $\sigma \in \Sigma$

$$t \in \mathcal{M}(p) \iff t' \in \mathcal{L}(p')$$

" \Rightarrow " The first Σ^+ matches the initial σ and the not matched prefix of t. Analogous for the second Σ^+ .

" \Leftarrow " The two Σ^+ match at least the initial and final σ .

Thus, p has to match some substring of t (possibly the empty string).