

The Complexity of Formal Language Decision Problems Bachelor Thesis Talk

Philipp Johann Schepper

Department of Computer Science Technische Universität Kaiserslautern

March 21, 2018

Context-Free Recognition (CFL recognition)

Let $G = (\Sigma, N, P, S)$ be a Context-Free Grammar (CFG) with:

 $P \subseteq N \to (\Sigma \cup N)^*$

 $S \in N$

Define $\mathcal{L}(G)$ as the language of G.

Definition (CFL recognition)

Decide for a input word w and a fixed grammar whether $w \in \mathcal{L}(G)$.

Theorem

CFL recognition can be decided in $\mathcal{O}\left(n^3\right)$ time, for a word $w=w_1\cdots w_n$ and a fixed CFG G.

PDA Emptiness I

Let
$$A = (Q, \Sigma, \Gamma, \delta, q_0, Q_f)$$
 be a PDA with:
 $\delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})) \rightarrow (Q \times \Gamma^*)$
 $Q_f \subseteq Q$
Define $\mathcal{L}(A)$ as the language of the PDA A .

Definition (PDA Emptiness)

Decide for a PDA A whether $\mathcal{L}(A) = \emptyset$.

Acceptance by empty stack: $A := (Q, \Sigma, \Gamma, \delta, \S, q_0)$ with $\S \in \Gamma$ as the special initial stack symbol.

PDA Emptiness II

Definition (Size of a PDA)

- $|A|_1 := |Q|$
- $|A|_2 := |\delta|$, i.e. the number of transitions

We define further the standard size of a PDA as follows: $|A| := |A|_1 = |Q|$

Theorem

PDA Emptiness can be decided in $\mathcal{O}\left(|A|_2^3\right)=\mathcal{O}\left(|\delta|^3\right)$ time, respectively $\mathcal{O}\left(|A|^4\right)$ time.

Context-Free Reachability (CFR) I

Definitions

Let
$$G = (\Sigma, N, P, S)$$
 be a fixed CFG. Let $H = (V, E)$ be a graph with: $V = \{v_1, \dots, v_n\}$ $E \subseteq V \times (\Sigma \cup \{\epsilon\}) \times V$

Definition (Definitions for CFR)

- A-path from s to t: Path from s to t labeled by a word w with $A \rightarrow^* w$.
- t is A-reachable from s. \iff There is A-path from s to t.
- Write *G*-path for *S*-path and *G*-reachable for *S*-reachable.

Definition (CFR)

Decide for a graph H, two nodes $s, t \in V$ and a fixed CFG G whether there is a G-path from s to t.

Context-Free Reachability (CFR) II

Definition (Size of a CFR instance)

- Fix the grammar.
- Define the size of an CFR instance by the size of the graph.
- The size of a graph is its number of vertices.

Theorem

CFR can be decided in $\mathcal{O}\left(|H|^3\right)$ time. For a fixed CFG G.

Context-Free Reachability (CFR) III

Definitions 000000

Definition (Dyck-k Reachability (DkR))

For DkR we fix the CFG G_k producing the Dyck-k language Dk.

```
Define G_k := (\Sigma_k \cup \overline{\Sigma_k}, \{S\}, P_k, S) with
```

$$\underline{\Sigma_k} := \{(1, (2, \dots, (k))\}$$

$$\overline{\Sigma_k}$$
 := $\{\overline{a} \mid a \in \Sigma_k\} = \{\}_1, \}_2, \ldots, \}_k\}$

$$P_k := \{S \to \epsilon |SS|(_1S)_1| \dots |(_kS)_k\}.$$

 G_k

Let H = (V, E) with |V| = n be an undirected graph.

Definitions

Definition

A k-clique is a set of k vertices, where each vertex is connected to each other vertex.

Definition (k-CLIQUE)

Decide for an undirected graph G=(V,E) and a fixed $k\in\mathbb{N}$ whether there is a k-clique in G.

Theorem

k-CLIQUE can be decided in $O(n^k)$ time.

Questions?

References I

- [ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. "If the Current Clique Algorithms Are Optimal, So is Valiant's Parser". In: Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS). FOCS '15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 98–117.
- [Alu+05] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas Reps, and Mihalis Yannakakis. "Analysis of Recursive State Machines". In: ACM Trans. Program. Lang. Syst. 27.4 (July 2005), pp. 786–818.
- [Cha08] Swarat Chaudhuri. "Subcubic Algorithms for Recursive State Machines". In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '08. San Francisco, California, USA: ACM, 2008, pp. 159–169.

References II

- [Lee02] Lillian Lee. "Fast Context-free Grammar Parsing Requires Fast Boolean Matrix Multiplication". In: *J. ACM* 49.1 (Jan. 2002), pp. 1–15.
- [Ryt95] Wojciech Rytter. "Context-free recognition via shortest paths computation: a version of Valiant's algorithm". In: *Theoretical Computer Science* 143.2 (1995), pp. 343–352.
- [Val75] Leslie G. Valiant. "General context-free recognition in less than cubic time". In: Journal of Computer and System Sciences 10.2 (1975), pp. 308–315.